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SUMMARY

Evolutionarily divergent bacteria share a common
phenomenological strategy for cell-size homeostasis
under steady-state conditions. In the presence of
inherent physiological stochasticity, cells following
this ‘‘adder’’ principle gradually return to their
steady-state size by adding a constant volume be-
tween birth and division, regardless of their size at
birth. However, the mechanism of the adder has
been unknown despite intense efforts. In this work,
we show that the adder is a direct consequence of
two general processes in biology: (1) threshold—
accumulation of initiators and precursors required
for cell division to a respective fixed number—and (2)
balancedbiosynthesis—maintenance of their produc-
tionproportional to volumegrowth. Thismechanism is
naturally robust to static growth inhibition but also al-
lows us to ‘‘reprogram’’ cell-size homeostasis in a
quantitatively predictive manner in both Gram-nega-
tive Escherichia coli and Gram-positive Bacillus
subtilis. Bygeneratingdynamicoscillations in the con-
centration of the division protein FtsZ, wewere able to
oscillate cell size at division and systematically break
the adder. In contrast, periodic inductionof replication
initiator protein DnaA caused oscillations in cell size at
initiation but did not alter division size or the adder.
Finally, we were able to restore the adder phenotype
in slow-growing E. coli, the only known steady-state
growth condition wherein E. coli significantly deviates
fromtheadder, by repressingactivedegradationof di-
vision proteins. Together, these results show that cell
division and replication initiation are independently
controlled at the gene-expression level and that divi-
sion processes exclusively drive cell-size homeosta-
sis in bacteria.

INTRODUCTION

Cellular physiology is composed of inherently stochastic pro-
cesses [1]. Cell size at birth can fluctuate due to asymmetric

division events or alterations in the timing or speed of constric-
tion. Without homeostatic control, cell size in a continuous
lineage would diverge with each division cycle. Evolutionarily
divergent organisms ensure size homeostasis at the single-cell
level by following a phenomenological principle known as the
‘‘adder’’ [2–14]. A central property of the adder is that newborn
cells deviating from the average size at birth add a nearly fixed
volume between birth and division, allowing them to exponen-
tially converge to the population average in each division cycle
(Figure 1). The adder sharply contrasts with a ‘‘sizer,’’ in which
cells divide when they reach a fixed size. The adder principle
has been extended to eukaryotes from yeast [9, 10, 13] to
mammalian cells [11, 12] that have long been considered as
sizers employing cell cycle checkpoints.
The identification of the adder represented a major shift in our

understanding of cell-size homeostasis [15, 16]. Naturally, many
models have been proposed to explain the mechanistic origin of
the adder phenotype.Most of thesemodels can be classified into
different groups by eachmodel’s proposed implementation point
of size control on the cell cycle. For example, recent works have
suggested that the adder is governed by a replication-initiation-
centric mechanism and division timing is determined by initiation
in individual cells [17]. These models are based on the observa-
tion that cell size at initiation of DNA replication is invariant [18]
at both single-cell [19] and population level [20]. These models
are in contrast to a division-centric view of size homeostasis pro-
posed earlier based on computer simulations [2] or biological
constraints imposed on cellular resource allocation to division
proteins [3, 21, 22]. Theoretical combination of replication and di-
vision controls hasalsobeensuggested at thephenomenological
level [23, 24]. Alternatively, cell shape, or more specifically the
surface-to-volume ratio of the cell, has also been suggested as
the determining factor for size control [25].
In this work, we explain the mechanistic origin of cell-size ho-

meostasis common to E. coli and B. subtilis, bacteria that
diverged over a billion years ago. Specifically, we show that
the adder phenotype is a direct consequence of two general pro-
cesses in biology: (1) (threshold) accumulation of division initia-
tors and precursors to a fixed threshold number per cell and
(2) (balanced biosynthesis) their production is proportional to
the growth of cell volume under steady-state condition. This
mechanism allows us not only to ‘‘break’’ but also to ‘‘restore’’
the adder phenotype in a predictive manner under all major
growth conditions.
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Before proceeding to our results, we want to clarify the termi-
nology. We use the term ‘‘cell-size control’’ for how cells deter-
mine their absolute size and ‘‘cell-size homeostasis’’ for how
cells correct deviations in size under steady-state growth. The
two concepts are therefore closely related yet differ with regard
towhether emphasis is given to the requirement for threshold (for
size control) or for balanced biosynthesis (for size homeostasis).

RESULTS AND DISCUSSION

Tracking Replication and Division Cycles at the Single-
Cell Level
To illuminate the mechanisms underlying the adder principle, we
performed a series of single-cell growth and cell-cycle tracking
experiments under various growth conditions. We used a func-
tional fluorescently labeled replisome protein (DnaN-YPet) to
image replication cycles and a microfluidic mother machine to
follow continuous lineages during steady-state growth [3, 26]
(Figures 1A and S1; STAR Methods; Data S1).

A major technical challenge arises in studying replication
dynamics when two replisome foci spatially overlap, which
makes it difficult to analyze overlapping replication cycles. To
resolve this issue, we trackedmultiple replication forks from initi-
ation to termination by extending previous imaging methods
[8, 19, 27, 28] using the ‘‘intensity weighting’’ techniques
[29, 30] developed for super-resolutionmicroscopy. Thismethod
allowed us to resolve overlapping replisome foci based on the

number of peaks measured in the intensity distribution
(Figure 1B; STAR Methods). These measurements showed
8%–20% of coefficients of variation (CVs) for physiological pa-
rameters consistent with previous measurements, with the CV
of cell size at initiation exhibiting one of the narrowest distribu-
tions (CV = 8%; Figures 1C and 2A; Methods S1-I).

E. coli Follows an ‘‘Initiation Adder’’ and a ‘‘Division
Adder,’’ Both Robust to Static Inhibition of Biosynthesis
Observation of wild-type cells growing at steady state indicated
the presence of two types of adder in E. coli: one functioning at
division (hereafter a division adder) and the other at replication
initiation (an initiation adder; Figure 1). Parallel to the division ad-
der [2, 3], the initiation adder is characterized by the addition of a
nearly constant size per origin between consecutive replication
cycles. This ensures that deviations in cell size (per ori) at initia-
tion exponentially converge to the population average in each
replication cycle [8, 31] (Figure 1D).
We next wanted to clarify the contribution of initiation and di-

vision to their respective adders. We utilized either tunable
CRISPR interference [20, 32] to inhibit expression of dnaA that
encodes the major bacterial DNA replication initiation protein
or an inducible-repressive promoter to modulate expression of
a division inhibitor protein SulA. As expected, delays in replica-
tion and division both increased the average cell size (Fig-
ure S2B). However, neither perturbation had a detectable effect
on the initiation adder or division adder (Figure 1D).

A B D

C

Figure 1. E. coli Is Both the Initiation Adder and Division Adder, Robust to Static Inhibition of Biosynthesis
(A) Division adder versus initiation adder. Upper: Dd is the added size between birth size Sb and division size Sd, and Di is the total added size between two

consecutive initiations. si is the cell size at initiation per origin, and di is Di per origin. Cell length is used as a proxy for cell size because cell width remains mostly

constant during cell elongation [3] (Figure S4). Lower: illustration of the replication cycle with two overlapping cell cycles is shown.

(B) Resolving overlapping foci using intensity weighting (STAR Methods).

(C) Three major measured physiological parameters show 8%–20% of variation. Each dot represents measurement from a single cell.

(D) Under steady-state growth,E. coli is a division and an initiation adder, with or without static biosynthetic inhibition. Symbols are the binned data, and error bars

indicate SEMs. In the correlation plots, the variables were rescaled by their means. 6 mMchloramphenicol and 0.05 mg/mL fosfomycin were used. See sample size

in Table S3.

See also Figures S1 and S2 and Data S1.
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We also tested whether perturbations to global biosynthesis
affect cell-size homeostasis, as they cause E. coli to deviate
from the ‘‘growth law’’ of cell size, namely the well-established
exponential relationship between the average cell size and the
nutrient-imposed growth rate [20, 33]. In addition, previous
work proposed accumulation of a fixed amount of cell-wall pre-
cursors as the mechanism of division adder [25]. We thus used
either chloramphenicol or fosfomycin to target ribosomes or syn-
thesis of cell-wall precursors, respectively, with the expectation
that cells treated with these antibiotics would no longer exhibit
the adder phenotype. In both cases, however, we found that de-
fects in these major biosynthetic pathways did not affect either
type of adder (Figure 1D).
Together, these data show that E. coli possess the capacity to

buffer steady inhibitions of cell cycle progression or general
biosynthesis to maintain robust size homeostasis.

Using Stochastic Simulations to Identify Experimental
Conditions whereby E. coli Should Deviate from the
Adder
The robustness of adder posed unforeseen challenges for our
attempts to identify the biological processes underlying the
adder phenotype. Although we considered other types of per-
turbations or genetic screens, we realized that the physiolog-
ical space was unrealistically large for brute-force search via
single-cell time-lapse experiments. To circumvent the experi-
mental challenges, we resorted to single-cell stochastic simu-

lations and surveyed the entire physiological landscape
(Figure 2A).
A subtle but important problem in our initial stochastic simula-

tions was how to decide the timing of cell division. This issue is
related to an outstanding question in bacterial physiology:
whether replication and division are independently controlled
or co-regulated [34]. We implemented the Helmstetter-Cooper
model [35, 36] that is often interpreted tomean that initiation trig-
gers division after a fixed elapsed time tcyc = C + D (Figures 1A
and 2A) [17, 37]. To take into account biological stochasticity
(Figures 1C, 2A, and S2A), we allowed for fluctuations in the three
physiological variables, three cross-correlations, and three
mother-daughter correlations (STAR Methods; Methods S1-I).
When we incorporated this implicit co-regulation hypothesis
and stochasticity [17] in our simulations, we observed that the
initiation adder leads to the division adder (Figures 2B and 2C).
A brute-force numerical investigation of the entire parameter

space suggested conditions under which size homeostasis
should deviate from the adder and, importantly, an experimental
means to break the adder. Specifically, when we varied the
mother-daughter autocorrelation of the initiation size per ori si
away from 0.5, cell-size homeostasis significantly deviated from
the division adder. Otherwise, most other perturbations to physi-
ological parameters did not severely affect the adder at division,
reinforcing the general robustness of adder observed in our inhibi-
tion experiments (Figure 1D). In fact, in the stochasticHelmstetter-
Cooper model, the mother-daughter autocorrelation of si alone

A C

B

Figure 2. Survey of the 9-Dimensional Cell-Size Homeostasis Space via Stochastic Helmstetter-Cooper Model, Assuming a Co-regulation
Hypothesis between Replication Initiation and Cell Division
(A) The schematics of single-cell simulation of cell growth and cell cycle progression. We used experimental data to introduce stochasticity to l, tcyc, and si.

(STAR Methods; Methods S1-I). We did not consider stochasticity in the septum position because its variability is the smallest (<5%) among all measured

parameters in E. coli [3].

(B) Survey results. Pearson coefficient was used to quantify both cross-correlations (e.g., corr(l, tcyc)) and mother-daughter autocorrelations (e.g., corr(ln, ln+1)).

Each 3D plot is based on 1,000 simulations, and each simulation computed 10,000 division cycles (Methods S1-I). Purple color indicates an adder-like behavior

defined as !0.1 < corr(Dd, Sb) < 0.1 (inset on bottom left). 5 means the actual simulation took the convolution of all nine dimensions.

(C) Simulations revealed that the adder phenotype would break if the initiation size autocorrelation can be modulated, and the division adder and the initiation

adder should co-vary (inset). The division adderness is corr(Dd, Sb), and the initiation adderness is corr(di, si).

See also Figure S2, Data S1, and Methods S1.
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completely determines the initiation adderness (Figure 2C;
Methods S1-I). Because autocorrelation 0.5 is equivalent to expo-
nential convergence of size deviations, we realized that the adder
would break if we can experimentally modulate the speed of
convergence [38].

Dynamic Perturbation of Replication Initiator Synthesis
to the Synthesis of Replication Initiators Breaks the
Initiation Adder
Toexperimentally test our predictions fromsimulations,wesought
toalter theautocorrelationofcell sizeat initiation tomodifycell-size
homeostasis. We found the properties of the DNA replication pro-
tein DnaA made it ideal for our test. DnaA is a widely conserved
essential protein required for initiation of DNA replication in bacte-
ria. In bacteria in which it has been examined, replication initiation
depends in part on accumulation of a sufficient number of DnaA

A

B

Figure 3. Dynamic Perturbation of DnaA Pro-
duction Breaks the Initiation Adder, but Not
the Division Adder
(A) Prediction of periodic induction of dnaA at every

other generation (period T = 2t), based on the co-

regulation hypothesis [17, 37]. Small-born cells

would grow by larger added size, whereas large-

born cells would grow by smaller added size,

behaving like a sizer.

(B) Initiation size periodically oscillated, breaking the

initiation adder. The division adder remained intact,

refuting the co-regulation hypothesis. The period of

isopropyl b-D-1-thiogalactopyranoside (IPTG) infu-

sion was about 4t, and the IPTG concentration was

altered between 200 mM and 0 mM (Methods

S1-III.E). The left plots show the data of periodic

underexpression of dnaA. Each dot corresponds to

one division cycle of a single cell. In the correlation

plots, the variables were normalized by their means

and the shaded area represents the 95% confi-

dence interval of linear fit to the respective raw

scatterplot. The cell images overlay phase contrast

with fluorescence of replisome markers.

See also Figure S3, STAR Methods, Methods S1,

and Table S3.

molecules at the origin of replication
[39–41]. Previous studies and our data
showed that an underexpression of dnaA
causes an initiation delay, whereas an over-
expressionofdnaAcausespremature initia-
tion (Figure S3A) [20, 42].

The relationship between dnaA expres-
sion level and initiation size led us to a rela-
tively simple strategy to break the adder. If
we periodically induce dnaA, the initiation
size would oscillate at the same frequency
as the induction. This should introduce
negative autocorrelations to both initiation
size and division size, as illustrated in Fig-
ure 3A. The negative autocorrelations
would bemaximal when the period of oscil-
lation T is two times the doubling time t,
because small-born cells add a larger size

until division, whereas large-born cells add a smaller size until di-
vision at every other division cycle (Figure 3A). Consequently, cell-
size homeostasis during oscillations is sizer-like.
In our actual experiments, we had to use T z 4t because of a

significant induction and dilution time of dnaA (Figure S4A;
Methods S1-III.E) [43]. Nevertheless, these experiments showed
clear oscillations in the initiation size without noticeable changes
in the growth rate (Figures 3B and S3). The measured autocorre-
lations of initiation size decreased accordingly, decisively
breaking the initiation adder as predicted by our simulations (Fig-
ure 3B; Methods S1-I.E).

The Division Adder Is Independent of Initiation Control,
Refuting the Co-regulation Hypothesis
To our surprise, and counter to the co-regulation hypothesis [17],
the division adder remained intact even when the initiation adder
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no longer held by periodic induction of DnaA expression (Fig-
ure 3B). When initiation was delayed, the division size remained
mostly constant as long as replication termination timing did not
exceed the division timing. Thereafter, initiation delay caused an
increase in division size (Figure S3D) [20]. Decoupling between
the initiation adder and the division adder suggested that the
timing of cell division, in fact, has its own independent control
at the level of gene expression [2, 24, 44, 45]. We further
reasoned that division timing is regulated by the dynamics of
proteins and precursors required for division, rather than that
of DnaA and other proteins required for replication initiation.
We thus set out to break the division adder without breaking
the initiation adder.

Dynamic Perturbation to the Synthesis of Division
Initiators Breaks the Division Adder, but Not the
Initiation Adder
Cell division requires assembly ofmore than a dozen types of pro-
teins and biomolecules at the future septum, including the en-
zymes required for synthesis of the septal cell wall. We elected
to use the tubulin-like guanosine triphosphatase (GTPase), FtsZ,

A

B

Figure 4. Dynamic Perturbation to Division
Breaks the Division Adder, but Not the Initia-
tion Adder
(A) Dynamic modulation of division protein FtsZ

oscillates the division size, but not the initiation size.

(B) To periodically modulate the FtsZ production,

IPTG concentration was alternated between 0 mM

and 10 mM for E. coli and xylose concentration be-

tween 0.1% w/v and 1% w/v for B. subtilis at every

4t. For periodic induction of sulA in E. coli, IPTG

concentration was alternated between 0 mM and

40 mM at every 4t.

The data presentation of this figure is the same as

that in Figure 3 (see caption). See also Figure S4 and

Methods S1.

because (like DnaA) it is highly conserved
and assembles in an expression-level-
dependent manner. FtsZ-ring formation is
required for assembly of all other compo-
nents of the cell division machinery
[46, 47], and the timing of division has
been shown to be systematically delayed
when FtsZ is underexpressed [48, 49].
FtsZalsohaspractical advantagesbecause
its genetic and cytological properties have
been extensively characterized [50].
To determine whether oscillations in

FtsZ production break the division adder
in the same manner that oscillations in
DnaA break the initiation adder, we adop-
ted a strain in which the wild-type ftsZ
was expressed under the control of an
inducible promoter (Figure 4A) [48, 51].
We also tracked replication dynamics us-
ing the fluorescent replisome marker.
When we periodically underexpressed
ftsZ with T z 4t, cell size at division oscil-

lated with the same period, exclusively breaking the division ad-
der without affecting initiation size (Figures 4B, S4A, and S4D). In
addition, we obtained the same results by periodically producing
the division inhibitor protein SulA (Figures 4C and S4B).
We repeated our experiments under different induction levels

of ftsZ, keeping the induction frequency same as before. The de-
gree of deviations from the division adder systematically
increased, yet the initiation adder remained intact, underscoring
the independence between the initiation adder and the division
adder in cell-size homeostasis (Figures 4B, S4A, and S4D;
Methods S1-III). These results also show that cell division pro-
cesses exclusively drive cell-size homeostasis in E. coli.

E. coli andB. subtilis Likely Share the SameMechanistic
Origin of Cell-Size Homeostasis
Next, we asked whether the exclusive role of cell division on size
homeostasis, and its independence of initiation control, is a gen-
eral feature of bacteria. To explore this idea, we repeated the
FtsZ oscillation experiments in amodel Gram-positive bacterium
B. subtilis.B. subtilis is particularly interesting because, although
DnaA and FtsZ are conserved in both bacteria, the mechanisms
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governing both replication initiation and division in B. subtilis
differ in fundamental ways from those in E. coli [47, 52]. We con-
structed a strain that encodes ftsZ under an inducible Pxyl pro-
moter as the sole source of FtsZ, in addition to the functional
DnaN-mGFPmut2 fusion protein (Figure 4A) [53]. Together, these
constructs permit periodic modulation of FtsZ levels and simul-
taneous tracking of replication dynamics.

Similar to E. coli, B. subtilis exhibited systematic deviations
from the division adder when ftsZ expression was varied period-
ically. Furthermore, we found B. subtilis to be an initiation adder
regardless of the oscillations (Figures 4B, S4C, and S4E). These
results strongly suggested that E. coli and B. subtilis share the
same mechanistic origin of cell-size homeostasis.

Mechanistic Origin of Cell-Size Homeostasis in
Bacteria: Threshold and Balanced Biosynthesis
Our data so far indicated it is possible to break the adder pheno-
type using periodic oscillations in the production rate of cell-cy-
cle proteins to perturb initiation size or division size (DnaA for the
initiation adder and FtsZ for the division adder). This finding sug-
gests that balanced biosynthesis of cell-cycle proteins is likely an
important requirement for the adder phenotype.

In balanced biosynthesis, the protein production rate is pro-
portional to the rate cells increase their volume, irrespective of
the protein concentration at birth. Cells therefore on average
add a fixed number of proteins per unit volume during growth,
and the total number of newly synthesized proteins is directly
proportional to the total cell volume added since birth. Assuming
balanced biosynthesis, a cell would be a division adder if division
is triggered after accumulating a fixed number of division pro-
teins, namely a fixed volume (Figure 5A; Methods S1-II). In other

words, two experimentally testable assumptions are sufficient to
explain the adder phenotype: (1) threshold—accumulation of
initiators and precursors required for cell division to a fixed num-
ber—and (2) balanced biosynthesis—maintenance of their pro-
duction proportional to volume growth.
To test this idea, we measured the production rate and the

accumulation of FtsZ in single cells. We adopted an E. coli
strain expressing a nearly functional fusion ftsZ-mVenus as
the sole endogenous copy of ftsZ [54]. We used the total fluo-
rescence per cell, I, to estimate the total copy number of FtsZ
per cell (Figure 5B; STAR Methods) and indeed found that I
increased proportionally to the increase in cell volume in indi-
vidual cells (Figure S5B). The production of FtsZ-mVenus per
unit volume, dI/dS, during growth was independent of the cell
size or FtsZ concentration at birth, consistent with the
balanced biosynthesis hypothesis (Figures 5C and S5C)
[55, 56]. Furthermore, the total accumulation of FtsZ-mVenus
between birth and division, DI = Id ! Ib, was also constant and
independent of cell size or FtsZ concentration at birth Ib,
supporting the threshold hypothesis (Figures 5C and S5C)
[21, 25, 57–59].
These results extend the previous observations that the Z-ring

appears at mid-cell shortly after birth and FtsZ accumulates at
the Z ring steadily over the course of the division cycle [60–63]
(Figures 5B and S5A). We also found that the onset of constric-
tion coincides with when the total Z-ring intensity reaches its
max value. The maximal Z-ring intensity was independent of
the cell size or FtsZ concentration at birth (Figures S5A and
S5C), reinforcing the molecular basis for the threshold model.
As explained below, we further verified these hypotheses in
our oscillation experiments.

A B

C

Figure 5. The Mechanistic Origin of the Adder and Validation
(A) The adder phenotype requires accumulation of division proteins to a fixed amount 2N* to trigger division and their balanced biosynthesis during growth. Under

these conditions, newborn cells are born either larger or smaller than the population average, but they on average contain N* division proteins. The two adder

requirements ensure that both small-born and large-born cells add a constant size (namely, N* division proteins) in each generation.

(B) A typical time-lapse sequence with FtsZ-mVenus. The total intensity was obtained by integrating the FtsZ-mVenus fluorescence intensity over the entire cell,

which increases steadily from birth to division, tracking elongation of the cell. As a result, the FtsZ-mVenus concentration stays nearly constant within

fluctuations.

(C) The synthesis and accumulation of FtsZ in E. coli cells fulfills both requirements for adder. The total added FtsZ number DN (estimated by the added

fluorescence DI) and the synthesis per unit volume dN/dS were constant and independent of cell size at birth.

See also Figure S5 and Methods S1.
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Testing the Mechanism of the Adder in the FtsZ
Oscillation Experiments
As the steady-state growth experiments supported the
threshold and balanced biosynthesis hypotheses, we further
tested them in new oscillation experiments. We combined the
ftsZ-mVenus strain with the inducible system used in the oscil-
lation experiments (Figure S6A; STAR Methods). As expected,
FtsZ-mVenus concentration oscillated in response to the peri-
odic induction, and the division size exhibited clear out-of-
phase oscillations (Figure 6A; Methods S1-III). Despite the
oscillations in FtsZ-mVenus concentration, the maximal
Z-ring intensity at mid-cell and the total added fluorescence
remained remarkably constant throughout the experiments,
regardless of the FtsZ concentration or cell size at birth
(Figures 6A and S6C).
The sizer-like behavior can also be explained by the out-of-

phase oscillations in the FtsZ concentration and division size.

During periodic induction of ftsZ, small-born daughter cells
contain higher concentrations of FtsZ, because their mother
cells accumulated FtsZ at a faster rate during high-level induc-
tion and therefore divided early. These new small-born
daughter cells in turn experience low-level induction (Figure 6B,
bottom) and thus accumulate FtsZ to the fixed threshold
number at a slower rate and elongate longer to reach division
(Figure 6B, top). Indeed, the added size Dd versus newborn
size sb shows a characteristic sizer-like negative slope (Figures
S6C and 4).

How to Restore the Adder Phenotype in Slow-Growing
E. coli
Although a wide range of evolutionarily divergent organisms are
adders [15], a major exception has also been reported for E. coli.
Specifically, Wallden et al. reported that size homeostasis, dur-
ing slow growth in nutrient limitation, deviates from the adder
[19]. We re-analyzed the published data in Wallden et al. and
also performed our own experiments in the same growth condi-
tion. In contrast to Wallden et al. [19], we found that the
slope !0.31 in the Dd versus newborn size Sb is in fact much
closer to the adder (slope = 0) than the sizer (slope = !1) in
both experiments. At the same time, the deviations from the
adder are statistically significant (p value = 1.4 3 10!6), as
pointed out by Wallden et al.
Wallden et al. [19] provided a possible explanation for their

observation, based on the Helmstetter-Cooper model at the sin-
gle-cell level. That is, the cell size at division can be written as
Sd = si$exp(ltcyc) for non-overlapping cell cycles when cells
grow in nutrient poor media. If si is invariant while tcyc is inversely
proportional to l at the single-cell level because all biosynthesis
is equally limiting in slow-growth conditions [19], l$tcyc = con-
stant and therefore the invariant si implies Sd is fixed regardless
of the birth size, thus the sizer. Although elegant, this explanation
is based on the co-regulation hypothesis and predicts both slope
in Dd versus sb and Di versus si to be!1. For this prediction to be
valid, both l$tcyc and si should be uncorrelated with birth size,
which is in conflict with our data (Figure S7A). Indeed, our data
obtained from the same growth condition as Wallden et al.
instead show that slow-growing E. coli is an initiation adder
and mildly deviates from the division adder (Figures 7, S7B,
and S7C).
Our intuition for the discrepancy was that the slow-growing

E. coli violates one or both requirements for the division adder
(Figure 5). Specifically, we asked whether FtsZ is actively
degraded in slow-growth conditions [64, 65], resulting in a
higher turnover rate. Active degradation of FtsZ should
decrease both autocorrelation of FtsZ concentration and divi-
sion size (Figures 7A and 7B; STAR Methods). We further pre-
dicted that suppression of the activity of FtsZ would restore the
division adder.
We tested our prediction by repressing clpX expression us-

ing our tCRISPRi system [32]. We found that clpX repression
was indeed sufficient to fully restore the division adder (Fig-
ure 7B). The initiation adder was intact with or without the
clpX repression (Figures 7B and S7C). These results provide
strong experimental evidence for balanced biosynthesis and
threshold as the requirements for cell-size homeostasis to
be an adder.

B

A

Figure 6. Testing the Mechanism of Adder in the FtsZ Oscillation
Experiments
(A) Total FtsZ-mVenus concentration oscillates in response to the periodic

induction, but the threshold amount at the septum is invariant. The amount of

FtsZ accumulated in the septum ring was estimated by integrating the fluo-

rescence intensity within a fixed area enclosing the mid-cell region (STAR

Methods). The solid lines represent the prediction based on balanced

biosynthesis and threshold model (Methods S1-III).

(B) The total added fluorescence DI and the max Z-ring intensity remain

invariant with respect to birth size. By contrast, the production rate of FtsZ was

variable due to oscillations.

Symbol colors indicate repeats of experiments, similar to Figure 5B. See also

Figure S6.
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Relationship with Previous Works
Balanced biosynthesis and threshold are general concepts in
biology and have been implied in a number of papers since the
1970s from replication initiation [31] or cell division [3, 21, 59]
in bacteria to mitotic control in eukaryotes [66]. The threshold
model has also been explicitly put forward as the trigger of cell
division as starved E. coli cells resume growth [64]. A recent
work addressed whether cell shape contributes to size control
[25], but we recognize its core implicit assumptions are balanced
biosynthesis of cell-wall precursors and their accumulation to a
threshold to build the septum.

Previous work independently showed that E. coli is a division
adder but also questioned whether size control is implemented
at initiation or division [2]. We have shown that division drives
size homeostasis in E. coli and B. subtilis, but they are both initi-
ation and division adders in steady state (Figure 1D). The inde-
pendence between the two types of adders can only be revealed
in non-steady-state growth (Figures 3 and 4). Subsequent anal-
ysis [67] has shown that the experimental evidence in Campos
et al. [2] may in fact agree with the initiation adder. As we show
in Methods S1-IV, the initiation control model in [2] can result
in unstable cell size regulation but can be corrected when growth
by a constant size per origin is implemented at initiation in
steady-state growth (Methods S1-IV).

Another notable proposal for cell-size control in E. coli is a
negative feedback imposed on cell size [68]. The hypothetical
feedback exclusively relied on transient ‘‘oscillations’’ observed
in the autocorrelation function (ACF) of cell size in experimental
data and simulation data of an autoregressive model. However,
it is well known that the ACF of the autoregressive model they

A

B

Figure 7. Restoring the Division Adder
(A) Our hypothesis for why E. coli under slow growth

conditions deviated from the adder toward the sizer

reported in [19]. In slow-growing cells, significant

amount of FtsZ is actively degraded by ClpXP

[64, 65], which decreases autocorrelations of FtsZ

concentration.

(B) We were able to restore the adder in slow growth

conditions (doubling time z4 h) by repressing clpX

expression via tCRISPRi (STAR Methods), confirm-

ing our hypothesis. Inset shows that wild-type E. coli

is an initiation adder in slow-growth conditions. Each

shaded area represents the 95% confidence interval

of linear fit to the respective raw scatterplot.

See also Figure S7 and STAR Methods.

used is an exponential function, in contra-
diction with the claimed oscillations. In
other words, it is likely that the oscillations
observed in both experimental and simula-
tion ACFs are fortuitous and caused by an
insufficient sampling (approximately n = 70
generations in each lineage) that fails to
produce statistically meaningful autocor-
relation coefficients.

Conclusions
Altogether, we have shown that it is cell di-
vision [2, 3, 21, 25], not replication initiation

[17, 37, 67], that drives cell-size homeostasis in bacteria. Initia-
tion control is important in cell-size control, rather than cell-
size homeostasis, because initiation defines unit cellular volume
(or ‘‘unit cell’’) so that the average cell size in any steady-state
population is given by the sum of all unit cells [20]. From the
cell-cycle control point of view, we showed that initiation and di-
vision are independently controlled in both E. coli and B. subtilis,
thereby providing a conclusive answer to the long-standing
question whether replication initiation regulates cell division in
bacteria [34].
The mechanism underlying the adder phenotype for size ho-

meostasis reduces to two biological hypotheses: (1) balanced
biosynthesis of division proteins and precursors and (2) their
accumulation to a threshold number in individual cells. In this
work, we provided direct experimental evidence that supports
these two hypotheses for cell-size control and homeostasis. In
our view, a next major question for the future is how a threshold
model is implemented at the molecular level in division control
and cell cycle control in general, while continuing a constructive
dialog between quantitative phenomenological principles and
mechanistic investigation.
Themechanism of adder has obvious implications for its appli-

cability to other biological problems, such as homeostasis of
organelle content [56]. From an evolutionary point of view, cell-
cycle-dependent degradation of cyclins may explain why some
eukaryotes show clear departure from adder by actively modu-
lating physiological memory. But perhaps a more curious case
is the mechanism of size homeostasis of the first cells or syn-
thetic cells, for which the simplicity of balanced growth makes
adder an intriguing possibility.
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STAR+METHODS

KEY RESOURCES TABLE

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Suckjoon
Jun (suckjoon.jun@gmail.com).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Strains
E. coli
Strain background. The E. coli strains used in all mother machine experiments are with either K-12 NCM3722 or K-12 MG1655
background. Both strains were sequenced and extensively tested in previous studies [20, 69, 70]. Strains with NCM3722 background
were only used in steady-state growth, and strains with MG1655 background were used in both steady-state and oscillation exper-
iments. Detailed information of strain genotypes are included in Tables S1 and S2.
Parent strains. Some of the strains used in this study were constructed based on existing parent strains which have been tested and
published. The original strain with the DnaN-YPet replisome marker was a kind gift of Rodrigo Reyes-Lamothe [71]. The strain for
DnaA knockdown is based on the tunable CRISPR interference system developed in the Jun lab [32]. The DnaA overexpression strain
used in the steady-state inhibition experiment is based on a strain with a plasmid carrying an extra copy of dnaA under Plac promoter
which was a kind gift of Tsutomu Katayama [72]. The DnaA overexpression strain used in the oscillation experiment is based on a
similar strain with a plasmid carrying an extra copy of dnaA under Plac promoter which was a kind gift of Anders Løbner-Olesen
[43]. The construct of FtsZ-mVenus was a kind gift of Harold Erickson. In this construct, mVenus is inserted into the linker between
domains of FtsZ, which hasminimal effect on the function of FtsZ [54]. The system of Ptac::FtsZwas developed inMiguel Vicente’s lab

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial Strains

See Table S1 N/A

Chemicals, Peptides, and Recombinant Proteins

Chloramphenicol Sigma Cat# C0378-5G

Fosfomycin Sigma Cat# P5396-5G

Oligonucleotides

Primers for replacing ftsZ with ftsZ-mVenus This paper N/A

Forward: ATGTTTGAACCAATGGAACTTACC

Primers for replacing ftsZ with ftsZ-mVenus This paper N/A

Reverse: ACGTGTCTGGTCAACGAGCA

sgRNA targeting sequence for ClpX: TCCGTGT

ATATCTGCGACGA

This paper N/A

Software and Algorithms

MATLAB R2015b Mathworks, Inc. RRID: SCR_001622

Anaconda Python 2.7 Anaconda, Inc. https://www.anaconda.com/distribution/

NIS-Elements Nikon Instruments Inc. RRID: SCR_014329

Other

Nikon Ti-E inverted microscope Nikon Instruments Inc. Cat# MEA53100

Nikon Perfect Focus system 3 Nikon Instruments Inc. Cat# MEP59391

Obis lasers 488LX Coherent, Inc. Part# 1236444

Obis lasers 561LS Coherent, Inc. Part# 1230949

Andor NEO 5.5 sCMOS camera Oxford Instruments Model# DC-152Q-C00-FI

Prime 95B sCMOS camera Photometrics https://www.photometrics.com/products/

scmos/prime95B

PHD ULTRA Syringe Pump Harvard Apparatus Cat# 70-3007
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[48, 51], and the strain VIP205 containing this systemwas a kind gift ofWilliamMargolin.We are grateful to the researchersmentioned
above for these gifts of strains.
B. subtilis
Strain background. TheB. subtilis strains used in all mothermachine experiments had JH642 backgroundwhich is autoxophoic and
requires supplementation of tryptophan, phenylalanine and threonine.
Parent strains. The original strain with DnaN-mGFPmut2 replisome marker was developed in Alan Grossman’s lab [53] and was a
kind gift of Paul Wiggins whose lab has conducted the cell cycle measurement using this strain [28].
See detailed strain information in Tables S1 and S2.

Growth media
ForE. coli, we usedMOPS orM9minimalmedia suppliedwith different carbon sources and amino acids. ForB. subtilis, S750minimal
media with different carbon sources and other supplements were used. The details of the media used are listed in the tables below.
List of growth media, carbon sources and supplements for E. coli.

Media Name

(as used in the text) Buffer

Carbon Source (v/w)

Concentration Supplement

arginine MOPS modified buffer glucose 0.4% no NH4Cl

glucose MOPS modified buffer glucose 0.2% -

glucose + 12 a.a. MOPS modified buffer glucose 0.2% see below

glycerol + 11 a.a. MOPS modified buffer glucose 0.2% see below; no serine added

M9 acetate M9 minimal buffer sodium acetate 0.4% see below

MOPS Modified Buffer

Components Concentration

MOPS (MW 209.3) 40mM

tricine (MW 179.2) 4.0 mM

iron(III) sulfate 0.1 mM

ammonium chloride 9.5 mM

sodium sulfate 0.276 mM

calcium chloride 0.5 mM

magnesium chloride 0.525 mM

sodium chloride 50 mM

ammonium molybdate 3 nM

boric acid 0.4 mM

cobalt chloride 30 nM

cupric sulfate 10 nM

manganese(II) chloride 80 nM

zinc sulfate 10 nM

potassium phosphate monobasic 1.32 mM
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List of growth media, carbon sources and supplements for B. subtilis.

Supplements for Glucose + 12 a.a.

Components Concentration (mg/ml)

L-methionine 500

L-histidine 500

L-arginine 500

L-proline 500

L-threonine 500

L-tryptophan 500

L-serine 500

L-leucine 500

L-tyrosine 500

L-alanine 500

L-asparagine 500

L-aspartic acid 25

M9 Minimal Buffer

Components Concentration

disodium phosphate 48 mM

monopotassium phosphate 22 mM

sodium chloride 8.6 mM

ammonium chloride 18.7 mM

magnesium sulfate 1 mM

calcium chloride 0.5 mM

vitamin B1 0.03 mM

Media Name (as used in the text) Buffer Carbon Source (v/w) Concentration Supplement

S750 mannose S750 buffer mannose 1% see below

S750 Buffer

Components Concentration

MOPS (MW 209.3) 50 mM

Ammonium sulfate 1 mM

potassium phosphate monobasic 5 mM

Supplements

Components Concentration

glutamate 6.8 mM

trisodium citrate 250 mM

iron(III) chloride 250 mM

tryptophan 50 mg/ml

phenylalanine 50 mg/ml

threonine 50 mg/ml
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Experimental conditions and sample size
The detailed growth conditions, experimental parameters and samples size of each experiment included in this study are listed
in Table S3.

METHOD DETAILS

Microfluidics
Mother machine microfluidic devices were used in this study to monitor single cell growth for 10-50 generations in both steady state
and oscillation experiments. Syringe pumps (PHDUltra, Harvard Apparatus, MA) were programmed to infuse fresh growthmedia into
microfluidic device at either a constant rate or in an oscillatory manner.

Cell preparation
Before every time-lapse imaging, cells were picked from a single colony on an agar plate which was streaked no more than 7 days
before use. The cells were inoculated into 1 mL lysogeny broth (LB) with proper selection antibiotics. After shaking for 12-18 hours at
30"C or 37"C in a water bath shaker, cells were diluted 1,000-fold into 2 mL of defined medium same as that used in the microfluidic
experiments. After shaking at 37"C in the water bath till OD600 = 0.1-0.4, cells were diluted again 100- to 1,000-fold into the same
medium and shaken at 37"C in water bath till OD600 = 0.1-0.4. The cell culture was then concentrated 10- to 100-fold and injected
into a microfluidic mother machine device via a 1 mL syringe. 0.5 mg mL!1 BSA (Bovine serum albumin, Gemini Bio Products, CA)
was added to the fresh growth media to reduce the adhesion of cells to the surface of microfluidic channels. The media were then
added to 10 mL, 20 mL or 60 mL plastic syringes (BD) with 0.22 mm filters (Genesee Scientific, CA) for the time-lapse imaging.
All imaging experiments were conducted at 37"C in an environmental chamber [3].

Microscopy and image acquisition
We performed simultaneous phase-contrast and epifluorescence imaging on an inverted microscope (Nikon Ti-E) with Perfect
Focus 3 (PFS3), 100x oil immersion objective (PH3, numerical aperture = 1.45), Obis lasers 488LX or 561LS (Coherent
Inc., CA) as fluorescence light source, and Andor NEO sCMOS (Andor Technology) or Prime 95B sCMOS camera (Photometrics).
The laser power was 18 mW for 488 nm excitation and 17 mW for 561 nm, respectively. Exposure time was set between
50-200 ms. Imaging frequencies were calibrated at about 20 frames per doubling time such that no physiological effects on
the cells were discernible.

Image processing
Cell segmentation, lineage reconstruction and cell dimension measurement
We developed custom imaging processing software using Python 2.7. The work flow is as follows. First, phase contrast images of
each field-of-view (FOV) were sliced into small images each containing one growth channel of themothermachine device. Second, to
enhance the contrast, the empty channels were subtracted from those containing cells in the same FOV. Third, subtracted images
were thresholded using Otsu’s method to create a binary mask and then applied with morphological operations and a distance filter
to create labeled markers. Markers were used to seed a watershedding algorithm on the subtracted images to create the segmented
image. Lastly, lineages were constructed using a decision tree which tracked the time-evolution of the cell segments. The cell dimen-
sion wasmeasured based on Feret diameter method: the cell length was calculated as the intercept of the cell’s long axis through the
cell center and the outline of the segmented cell, and the cell width was calculated as the themean of intercepts of the cell’s short axis
through the cell quarter positions and the outline of the segmented cell.
Replisome foci analysis
The images of replisomemarkers were processed using the segmentation and lineage information from the phase contrast images of
the same cells. Background subtraction was done by subtracting the mean value of multiple empty channels from those containing

S750 Metals

Components Concentration

magnesium chloride 2 mM

calcium chloride 700 mM

manganese(II) chloride 50 mM

zinc chloride 1 mM

iron(III) chloride 5 mM

vitamin B1 1 mM

hydrochloride 20 mM
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cells in the same FOV. Unfiltered fluorescence foci were identified as local maxima using a Laplacian of Gaussian method (blob_log
function in Skimage v0.11.3). The localization for each identified focus was obtained using 2-D elliptic Gaussian fitting, and all foci
were filtered again according to their peak-to-background value. The total fluorescence of each replisome focus was estimated
as the total intensity of each blob. The distribution of fluorescence intensity of all foci was plotted and fitted with a double Gaussian
distribution. The position of the second peak of the fitted Gaussian was typically two times that of the first peak, suggesting that two
fluorescence foci were often spatially overlapping and undistinguishable due to the diffraction limit (Figure 1B). Therefore, a focus
with higher probability of falling into the second peak region (integral of the intensity distribution between that foci intensity and
the second peak > that of the first peak) was counted as two foci. The single-cell cell cycle analysis was carried out using a custom
MATLAB software. Intracellular positions and intensities of all foci in the same cells were plotted against time for the whole cell line-
age. The start and end points of each foci trace were determined as the replication initiation and termination with respect to division
cycles (Figures 1A and S1).
FtsZ-mVenus concentration analysis
Fluorescence images of FtsZ-mVenus were used to estimate the total amount FtsZ per cell, the total concentration of FtsZ, the total
fluorescence of the Z-ring and the cytoplasmic concentration of FtsZ. Compared to the replisomemarker images, extra calibration of
systematic errors was done as follows. (1) We corrected the photobleaching effect by truncating the time points when the average
fluorescence of cells have not reached steady state. (2) The illumination of the laser was often non-uniform across the FOV. The profile
of illumination was obtained from the average intensity of all cells in the same FOV. The fluorescence intensity of each cell was thus
calibrated according to the profile and their position in the FOV. (3) The FOV-to-FOV variations were typically less than 5%, so no
calibration was applied. The total fluorescence of FtsZ per cell was used to estimate the total amount FtsZ per cell. The total fluo-
rescence normalized by cell volume was used to estimate the total concentration of FtsZ. The amount of FtsZ in the mid-cell area
was quantified by integrating the fluorescence intensity within a fixed box with dimensions of 1 mm along cell long-axis and 1.5X
cell width along short axis. This area is centered at max intensity position of the line profile along cell long-axis. This quantity was
used as an approximation of the total fluorescence in the Z-ring. The cytoplasmic concentration of FtsZ was estimated as the total
fluorescence within an area of the same size centered at a cell-quarter position along the cell long-axis. The cytoplasmic concentra-
tion of FtsZ was shown to be much higher than the cellular autofluorescence. We showed this by co-growing and imaging the FtsZ-
mVenus strain and wild-type parental strain in the same mother machine device. The autofluorescence level of the wild-type strain is
less than 10% of the cytoplasmic FtsZ-mVenus fluorescence (Figure S5D).

Stochastic simulations of the Helmstetter-Cooper model
To investigate what determines cell-size homeostasis we developed stochastic simulations of the Helmstetter-Cooper cell cycle
model [18, 36]. In this model, three coarse-grained physiological parameters describe the progression of the cell cycle and cell
size: the growth rate l, the cell size per origin at replication initiation si, and the length of cell cycle tcyc = C+D, namely the duration
that spans one complete round of replication (C period) and division that corresponds to replication termination (D period). We intro-
duced stochasticity to these parameters (l, si, tcyc) and numerically probed the resulting behavior of cell-size homeostasis (Fig-
ure 1C). See more details in Methods S1-I. The stochastic fluctuations constituted a 9-dimensional physiological space consisting
of and three coefficient-of-variations (CVs), three cross-correlations and three autocorrelations (Figure 2A), with each physiological
dimension representing specific biological constraints. For instance, positive autocorrelations in the growth rate l mean that on
average fast-growing mother cells produce fast-growing daughter cells. When these refinements were added, our stochastic sim-
ulations self-consistently reproduced the experimentally observed adder behavior for all tested growth conditionswithout any adjust-
able parameters (Methods S1-I). In Figure 2A, we set out to systematically vary physiological parameters along all nine dimensions to
probe the adder behavior. Each simulation generated a lineage of 10,000 cells. The adder correlation r(Dd, Sb) was defined as the
Pearson correlation between the variablesDd and Sb in the simulated lineage. We adopted the same definition for the initiation adder
correlation r(di, si). Eventually, we found that deviations in the autocorrelation of initiation size per ori si from 0.5 significantly affected
the division adderness. In contrast, deviations from adder resulting from other perturbations were weaker or less systematic,
reinforcing the general robustness of adder observed in our inhibition experiments (Figure 1D). This sensitivity of adder to si autocor-
relation is clearly seen in the fraction of physiological space represented by adder (Figure 2A). It is also intuitive since in the
Helmstetter-Cooper model, division timing is regulated by chromosome replication initiation. As reference physiological values,
we used experimental measurements obtained for strain NCM3722 in slow growth condition (MOPS minus NH4Cl, 0.4% glucose,
5 mM arginine). Namely, where appropriate we parametrized the joint probability distribution using the mean and coefficient-of-
variations:

Variable l tcyc si

Mean 0.693 0.7 1

CV 15% 15% 10%
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and the Pearson cross-correlations and autocorrelations:

Note that we chose the generation time as unit of time and the cell size per origin at initiation as unit of volume. For this particular
condition, the generation time was ln(2)/hli = 112 minutes and the cell size per origin at replication initiation was si = 0.30 mm3.

Analysis of FtsZ oscillation experiment results
Let us consider a single cell, experiencing a switch in induction, corresponding to a change of steady-state concentration from
c* to c**. Denoting Sind the cell size reached when the switch in induction occurs, by applying Equation 22 and Equation 23 from
the Methods S1-II, we obtain:

sd ! sb =D##
d ! ðsind ! sbÞ

!
D##

d

D#
d

! 1

"
;

where Dd* = N0/(2c*) and Dd** = N0/(2c**) are the added size in each induction phase. Assuming exponential elongation of cell size at
the rate l, we may express:

sind ! sb = sb
#
elaind ! 1

$
;

where aind is the age of the cell when the switch in induction occurs. We therefore obtain for the conditional average:

hsd ! sbjsbi = D##
d ! A

!
D##

d

D#
d

! 1

"
sb;

where A = hela - 1i, and therefore A > 0.

Effect of ClpX on cell size homeostasis
In the presence of ClpX, we consider that division proteins are actively degraded at a rate m. Denoting N the copy number of division
proteins, the balanced biosynthesis of division proteins is modified to:

dN

dt
= c#dS

dt
! mN:

Assuming that the cell volume grows exponentially at the rate l, the previous ODE can be solved, and one obtains the following rela-
tion between copy number and cell volume:

SðtÞ = 1

c#

%
1+

m

l

&#
NðtÞ ! N

be
!mt

$
+ s

be
!mt ;

where Nb = N(t = 0) is the copy number at cell birth and Sb = S(t = 0) is the cell volume at cell birth. We assume even partitioning of
division proteins at division, so that their number at birth is half the threshold: Nb = N0 / 2. We can now get some insight on cell size
homeostasis by considering the two limiting cases (1) m& l and (2) m[ l. In case (1), we obtain to order zero in m/l that Sd - Sb =N0/
(2c*), which is the adder model. On the contrary in case (2), we obtain asymptotically: Sd = (m/l)$N0/c*, which is the sizer model. In
summary, the cell size behavior transitions from the adder model to the sizer model when active degradation of division proteins is
introduced.

QUANTIFICATION AND STATISTICAL ANALYSIS

The error bars in all main figures and supplemental figures represent standard error mean of binned data. In the correlation plots in
Figures 3, 4, and 7, the boundary of shaded area indicate 95%confidence interval of linear fit coefficients assuming themeasurement

Pearson correlation Value

r(l,tcyc) !0.5

r(l,si) !0.2

r(tcyc,si) !0.3

r(l(n+1),l(n)) 0.5

r(tcyc
(n+1),tcyc

(n)) 0.3

r(si
(n+1),si

(n)) 0.5
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errors are normally distributed and centered at zero. All the fittings were performed in Igor Pro 6 (Wavemetrics, Inc.). The typical
sample size of each experiment is about 103 cell. The detailed sample size of each experiment is listed in Table S3. In Figure 7B,
the significance of linear correlation (p value < 0.001) was estimated using Student’s t test inMATLAB. In the simulations (see Figure 2
and Methods S1-I), Pearson coefficient was used to quantify both cross-correlations and mother-daughter autocorrelations.

DATA AND SOFTWARE AVAILABILITY

We provide a dataset of single-cell growth and cell cycle as Data S1. We also would like to share all other data upon request.
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Figure S1: Visualizing and quantifying cell cycle in single bacterial cells in different growth conditions. Related to Figure 1.

We measured cell cycle and cell size simultaneously for many consecutive cell division cycles using microfluidic mother machine in different growth

conditions. Here (A)-(C) show the results of three nutrient conditions where the cells are growing with non-, two and three overlapping cell cycles,

respectively. The cartoons show the configuration of chromosome replication in one division cycle, similar to that in Figure 1. The foci positions along

the long axis of the cell clearly display the trace of replisomes, making it possible for high-throughput analysis using custom software (see details of

image analysis in STAR Methods; see the full data in Data S1). Note that, in fast growth conditions such as (C), the termination of replication often

finishes before the cell birth, and the daughter cells are born as diploid.
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Figure S2: Double-initiation events during steady-state growth due to stochastic cell physiology, and change in major physiological parameters

during steady inhibition experiments. Related to Figures 1 and 2.

(A) The decoupling between replication initiation and cell division is evident even from our results of steady-state growth. In the growth condition

shown in the figure, cells mostly are with two-overlapping cell cycle, namely, origins duplicate from 2 to 4 at initiation. However, during some division

cell cycles, cells fire two rounds of initiations before division, resulting in cells in the next division cycle undergo no initiation. This result disputes the

hypothesis that a cell always ensures one-to-one initiation-division correspondence for every division cycle. (B) The distributions of major physiological

parameters measured from all steady-state experiments as shown in Figure 1D. For a particular strain background, the initiation size per ori largely

remains the same, despite the changes in growth rate, cell cycle duration (τcyc) or division size. These single-cell results confirm the invariance of

initiation mass observed in previous population-level study [S1].
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Figure S3: Dependency of initiation mass on DnaA level in the DnaA overexpression experiment, and the full data of dynamic perturbation to

DnaA expression. Related to Figure 3.

(A) Using a strain carrying extra dnaA under Plac promoter on plasmids (see strain information in STAR Methods and Table S1), we induced the

overexpression of DnaA by using 0.1mM IPTG and measured the single-cell cell cycle. In this growth condition (MOPS + 0.4% glycerol + 11 aminos

acids), cells over-initiated after induction (DnaA shift-up); the origins duplicated from 2 to 4 before induction and 4 to 8 afterwards. Thus our results

show that the initiation mass is dependent on DnaA induction level. The reverse process was observed when 0.1mM IPTG was removed (DnaA

shift-down). The response time of both shift-up and shift-down took more than one doubling times (average doubling time ≈ 61min). Blue lines

represent the binned average. (B) and (C) Grey lines indicate the time averages. Each thin trace connects the values of each generation from a single

lineage, same for Figure S4. During the oscillation of DnaA induction, initiation mass changed periodically while growth rate and division size were

mostly constant. (D) The independent control of initiation and division is seen from our previous population-level data [S1]. Using the tunable CRISPR

interference system, we delayed the initiation time in a gradual manner. The initiation was delayed by either repressing dnaA or blocking oriC. When

initiation is delayed, the division size remains mostly constant as long as replication termination timing does not exceed the division timing. Thereafter,

initiation delay causes an increase in division size.
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Figure S4: Full data of dynamic perturbation to FtsZ expression in E. coli and B. subtilis. Related to Figure 4.

(A) Top left: The schematics of genetic modifications for the inducible system of division protein and fluorescence replisome markers. In E. coli, the

native promoter of ftsZ was replaced with a Ptac promoter. Top right: The cell images show oscillations of division size in E. coli from a single cell

lineage (replisome markers overlaid). Bottom: When FtsZ level was oscillated, division size, generation time and D period were oscillating accordingly.

In contrast, growth rate and initiation mass were mostly unchanged. The inset in the right column shows how the division size oscillated seen from a

single lineage. (B) The periodic expression of SulA in E. coli has similar effect on the physiological parameters to that of FtsZ. (C) Top: In B. subtilis,

the endogenous ftsZ was deleted while an alternative copy ftsZ under Pxyl was inserted at a different loci of the chromosome. The cell images show

oscillations of division size in B. subtilis from a single cell lineage (replisome markers overlaid). Bottom: When FtsZ level was oscillated, division

size, generation time and D period were oscillating accordingly. In contrast, growth rate and initiation mass were mostly unchanged. (D) and (E)

Reprogramming size homeostasis by dynamic modulation of FtsZ in E. coli and B. subtilis at the oscillation period 4τ. IPTG concentrations: blue = 5

µM -10 µM, red = 0 µM -10 µM. Xylose concentration: blue = 0.1% w/v -1 % w/v. In the correlation plots, the variables are normalized by their means

and solid lines are model predictions from Methods S1 I.E.
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Figure S5: Quantification of FtsZ-mVenus in E. coli under steady-state growth. Related to Figure 5.

(A) Steady accumulation of FtsZ at the Z ring “scaffold." The amount of FtsZ accumulated in the ring was estimated by integrating the total fluorescence

intensity within a fixed area enclosing the mid-cell region (septum intensity). The cytoplasmic intensity was measured similarly at the first and third

quarter positions. The dark red dot on each trace indicates the max total fluorescence in the Z ring, namely, the peak value of the accumulation trace. The

ratio of ring intensity to total cell intensity was calculated as the septum intensity subtracting the cytoplasmic intensity divided by the total fluorescence

per cell. This ratio approached a nearly constant value in the first half of the division cycle. During this period, the amount of FtsZ at septum well

mirrors the total amount in the cell. (B) Single-cell growth traces showing that the total FtsZ intensity per cell is linearly proportional to cell volume.

The slope of the linear fit was used to estimate dI/dS for each single cell. (C) Both the production per volume growth estimated by dI/dS and the

threshold estimated by ∆I are largely independent of FtsZ concentration at birth. The max total fluorescence in the Z ring is independent of birth size. In

the correlation plots, the variables are normalized by their means. (D) The autofluorescence of cytoplasm is negligible compared to the fluorescence of

cytoplasmic FtsZ-mVenus. Left: To show this, the strain with FtsZ mVenus (SJ1725) and the parental wild type MG1655 strain (SJ81) were co-grown

in mother machine. The cytoplasmic autofluorescence of wild type cells is almost same as that from the empty channels. Right: The mean value of

cytoplasmic intensity of wild type cell (n=468) is about 9.5% of that of FtsZ-mVenus cells.
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Figure S6: Full data of periodic expression of FtsZ-mVenus in E. coli. Related to Figure 6.

(A) When FtsZ level was oscillated, division size and generation time were oscillating accordingly. In contrast, the growth rate showed very mild

change. The illustration at top right shows the design of inducible system for ftsZ (see strain information in STAR Methods and Table S1). (B) The

oscillation of division size and FtsZ concentration can be seen from a continuous single lineage. (C) The maximal total fluorescence of Z-ring is largely

independent of FtsZ concentration and cell size at birth. In the correlation plots, the variables are normalized by their means.
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Figure S7: Cell-size homeostasis and production of FtsZ-mVenus in slow growth conditions. Related to Figure 7.

(A) Both si and λ · τcyc show correlation with birth size. (B) In slow growth condition, the cell-size homeostasis deviates from adder and the production

per volume growth dI/dS is also no longer independent of birth size. In the correlation plots, the variables are normalized by their means. (C) In

slow-growing E. coli cells, repressing clpX expression via tCRISPRi restored the division adder, while initiation adder was invariant. Each shaded area

represents the 95% confidence interval of linear fit to the respective raw scatter plot.



E. coli strains Genotype Experiments used Notes

SJ358 K-12 NCM3722 F-, – background
strain; [S2,S3]

SJ81 K-12 MG1655 F- λ- rph-1 – background strain;
low motility [S1]

SJ_XTL219 MG1655 lacY A177C, spec<>araFGH,
∆lacI ∆araE, PBAD-dCas9,
galM<pBBa-J23119 tet-sacB-handle-(S.

pyogenes terminator-(rrnB

terminator)>gmpA pSIM18)

– [S4]

SJ_XTL226 SJ_XTL219 dnaA sgRNA, dnaA – [S1]

VIP205 K-12 MC1061 with native ftsZ gene
replaced by pTAC-ftsZ

– [S5]

SJ_FS103 SJ358 transduction of kan-yPet-dnaN nutrient limitation (NCM3722),
chloramphenicol in Figure 1D

[S6]

SJ_FS104 SJ81 transduction of kan-yPet-dnaN nutrient limitation (MG1655),
fosfomycin in Figure 1D; no
oscillation data in Figures 2B and
3C

[S6]

SJ_FS105 SJ_XTL226 transduction of
kan-yPet-dnaN

DnaA knockdown in Figure 1D This study

SJ_FS110 SJ_FS104 transformation of pDB192 for
SulA overexpression

SulA overexpression in Figure 1D [S7]; This study

SJ_DL91 SJ_FS104 transformation of pSN306 for
DnaA overexpression

DnaA overexpression in Figure 1D;
DnaA oscillation in Figure 3A

[S8]; This study

SJ_FS112 SJ_FS104 transformation of pLR40 for
DnaA overexpression

DnaA overexpression in Figure 1D;
Exp. 1 of DnaA oscillation in
Figure 3A

[S9]; This study

SJ1436 SJ_FS112 recombineering of
∆dnaA::[Pcat::cat<>dnaA]

Exp. 2 of DnaA oscillation in
Figure 3A

[S9]; This study

SJ_FS116 SJ_FS104 transduction of kan-yPet-dnaN FtsZ oscillation (5 ↔ 10µM IPTG)
in Figure 4B

This study

SJ_FS117 VIP205 transduction of kan-yPet-dnaN FtsZ oscillation (0 ↔ 10µM IPTG)
in Figure 4B

This study

SJ1725 SJ81 recombineering of
∆ftsZ::[ftsZ55-mVenus-56]; confirmed by
sequencing

FtsZ concentration measurement
(steady-state) in Figures 5 and 7A

This study

SJ_FS119 VIP205 recombineering of
∆ftsZ::[ftsZ55-mVenus-56 tetA-sacB];
confirmed by sequencing

FtsZ concentration measurement
(oscillation) in Figure 6

This study

SJ_FS122 SJ_XTL219 clpX sgRNA, clpX;
transduction of kan-yPet-dnaN

ClpX repression with replisome
tracking in Figure 7A

This study

SJ_FS123 SJ_XTL219 clpX sgRNA, clpX;
recombineering of
∆ftsZ::[ftsZ55-mVenus-56 tetA-sacB]

ClpX repression with FtsZ
concentration measurement in
Figure 7B

This study

Table S1: Strain Information of E. coli. Related to the STAR Methods.



B. subtilis strains Genotype Experiments used Notes

PAW885 JH642, dnaN-mgfpmut2-spec – [S10,S11]

SJ_BS29 PAW885 transformation of motAB::Tn917 – This study

SEV645 SJ_BS29 transformation of ftsZ::cm and
thrC::Pxyl-ftsZ

steady state and FtsZ oscillation in
Figure 4B

This study

Table S2: Strain Information of B. subtilis. Related to the STAR Methods.



Experiment Name Strain Media Perturbation Parameters Sample size

Position in

figures

(symbols)

Nutrient

SJ_FS103

arginine

steady state

1,256 1D (!)

limitation glucose 1,328 1A-1D (!)

(NCM3722) glucose + 12 a.a. 1,230 1D (!)

Nutrient

SJ_FS104

M9 acetate

steady state

1,077 7A (!)

limitation glucose 1,640 1D (!)

(MG1655) glycerol + 11 a.a. 1,465 1D (!), 2A

3A, 4B (!)

Chloramphenicol SJ_FS103 glucose 6µM 1,232 1D (!)

Fosfomycin SJ_FS104 glycerol + 11 a.a. 0.05µg/ml 992 1D (!)

DnaA knockdown SJ_FS105 glycerol + 11 a.a. 30µM arabinose 704 1D (")

DnaA overexpression SJ_DL91 glucose 0.4mM IPTG 890 1D (#)

SulA overexpression SJ_FS110 glucose 60µM IPTG 1,164 1D ($)

DnaA oscillation
SJ_FS112 glycerol + 11 a.a.

0mM↔1mM IPTG;
1,070 3A (!)

(overexpression) period = 4 hours

DnaA oscillation
SJ1436 glucose

0mM↔0.2mM IPTG;
1,259 3A (!)

(underexpression) period = 4 hours

FtsZ oscillation SJ_FS117 glycerol + 11 a.a.

5µM↔10µM IPTG;
1,258 S4C (!)

period = 4 hours

0µM↔10µM IPTG;
1,673 4B (!)

period = 4 hours

FtsZ oscillation in B.

subtilis
SEV645 S750 mannose

steady state
606 4B (!)

1%(w/v) xylose

oscillation

608 4B (!)0.1%↔1%(w/v) xylose;

period = 4 hours

FtsZ concentration
measurement

SJ1725
glycerol + 11 a.a.

steady state
1,433 5 (!)

M9 acetate 8,492 7B (!)

FtsZ concentration
measurement

SJ_FS119 glycerol + 11 a.a.

steady state 842 5 (!)

oscillation 894 6 (exp1 !)

0µM↔20µM IPTG;
666 6 (exp2 !)

period = 4 hours

ClpX repression plus
replisome tracking

SJ_FS122 M9 acetate steady state 1,055 7A (!)

ClpX repression plus
FtsZ concentration
measurement

SJ_FS123 M9 acetate steady state 2,341 7B (!)

Table S3: Experimental conditions and sample size. Related to the STAR Methods.

The sample size represents the number of single cell division cycles measured from each mother machine experiment. The symbols in the rightmost

columns are the same as those in the corresponding main figures. ‘↔’ indicates that the oscillation experiment was conducted between the two

concentrations of inducer on both sides.
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I. SINGLE-CELL STOCHASTIC HELMSTETTER-COOPER MODEL

A. Deterministic Helmstetter-Cooper model

Here we model the growth of individual Escherichia coli cells. Based on experimental measurements, we posit that a single-cell
of size S elongates exponentially [S12–S14]:

dS

dt
(t) = λS(t), (1)

where λ is the growth rate. For rod-shaped bacteria such as E. coli the width is nearly constant, so the size means either the
length or volume of an individual cell (to a proportionality constant). In order to determine the division timing, we adopt the
Helmstetter-Cooper model, which couples the replication of the chromosome to the cell division (see Helmstetter-Cooper
model). This model proposes that cell division occurs after a prescribed time has elapsed since replication initiation. This time
is the duration of the cell cycle, denoted τcyc [S14,S15]. It comprises the time required to fully replicate the chromosome, known
as the C-period, and the time following replication termination until division, known as the D-period. Hence τcyc = C + D.
In other words, an initiation event commits the cell to division after the duration of one cell cycle. In bacteria, multiple
cell cycles can overlap. This occurs when the cell cycle duration is larger than the generation time: τcyc > τ. In order to
maintain its DNA content, a cell still needs to initiate chromosome replication once per generation (see Helmstetter-Cooper
model). At this stage, the problem of division timing is thus transfered to the problem of initiation timing. This is solved by
considering Donachie’s conjecture [S16], which is that a new round of replication initiates at a fixed size per number of origins
of replication (oriC), denoted si.

In summary, a model for the growth of a single cell is completely parametrized by the following “physiological variables”:

• the growth rate λ;

• the cell cycle duration τcyc;

• the initiation size per oriC si.

This model predicts that the cell at division is given by:

Sd = si exp (λτcyc), (2)

which was indeed verified experimentally at the population level [S1]. Single-cell measurement of the initiation timing re-
vealed that the initiation size is indeed tightly regulated. In fact, si is the physiological variable with the narrowest distribution
(Comparison of experimental measurements with simulations of the Helmstetter-Cooper model (1), Comparison of
experimental measurements with simulations of the Helmstetter-Cooper model (2) Comparison of experimental mea-
surements with simulations of the Helmstetter-Cooper model (3) and Comparison of experimental measurements with
simulations of the Helmstetter-Cooper model (4)).

B. Stochastic Helmstetter-Cooper model

In order to account for the experimental fluctuations in the physiological variables between individual cells, we treat them
as stochastic variables. That is to say, at cell birth, the growth rate, the cell cycle duration and the unit cell are drawn
from independent Gaussian distributions (Stochastic Helmstetter-Cooper model). Once the physiological variables are
determined, a single-cell follows the deterministic growth as described in the previous section.

In reality, we should expect that values taken by the physiological variables are not independent from each other. For
example, the growth rate and the cell cycle duration are anti-correlated [S14]. Another example comes from the observation
that cells growing faster than the average growth rate also tend to produce fast growing daughter cells. We call the former
type of correlation “cross-correlation” and the latter ones “autocorrelation”. In order to take into account those correlations,
we modify the way physiological variables are determined at cell birth. Let us denote the physiological state of a single cell
by the three-dimensional vector xn = (λn, τncyc, S

n
0 ). At cell birth, the physiological state of cell n + 1 is determined according

to the rule:
yn+1

= D · yn + A · z, where yn = xn − ⟨xn⟩. (3)

Here, D = Diag(α1, α2, α3) is a diagonal matrix enforcing mother/daughter correlations, A is a real symmetric matrix enforcing
the cross-correlations (to be determined below) and z is a vector of three independent unit Gaussian variables.
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Helmstetter-Cooper model. In bacteria, several rounds of chromosome replication can overlap when the duration of the cell cycle τcyc,
including both C- and D-periods, is larger than the generation time.

Equation (3) defines a discrete stochastic process. Being a sum of Gaussian random vectors, yn has a (multivariate)
Gaussian distribution. Furthermore, it can be shown that it converges toward the Gaussian distribution:

P (yn) −−−−→
n→∞

P (y) ,

P (y) =
1

√
(2π)3 det Σ

exp

(

−
1
2

yT · Σ−1 · y

)

,
(4)

whose covariance matrix Σ = [σi j]i, j has the elements:

σi j =
1

1 − αiαj

3∑

k=1

aikak j . (5)

The previous relation can be inverted to express the matrix A as a function of the covariance matrix of the limiting
distribution. We obtain:

A =
√

B, with B = [σi j(1 − αiαj)]i, j . (6)

In short, with an appropriate choice of the matrix A, the stochastic process in Equation (3) will sample random physiological
vectors distributed according to a Gaussian distribution with the desired covariance matrix Σ, in agreement with experimental
measurements. For the stochastic process in Equation (3), the variances of the physiological variables are given by:

⟨δx2
i ⟩ = σii, (7)

and the cross-correlations between the physiological variables are expressed as:

⟨δxi · δxj⟩ = σi j . (8)

Note that the Pearson correlation coefficients between the physiological variables are expressed as:

r(xi, xj) =
σi j

√
σii
√
σj j
. (9)

Concerning mother/daughter correlations, it can be shown that:

⟨δxni · δxn+1
j ⟩ = αiσ

n
ij −−−−→n→∞

αiσi j, (10)

with the corresponding Pearson correlations:
r(xni , x

n+1
j ) = αir(xi, xj). (11)
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Stochastic Helmstetter-Cooper model. (A) At each new generation, the physiological variables are drawn from a multivariate Gaussian
distribution with means and variances matching the experimental values. (B) In this example, cell division is coupled to an initiation event
happening in the grandmother cell: there is three overlapping cell cycles. (C) Examples of negative cross-correlation between λ and τcyc
and of positive mother/daughter correlation for λ.

In particular, the autocorrelation Pearson coefficients are:

r(xni , x
n+1
i ) = αi . (12)

In summary, we draw the physiological variables at each new generation according to Equation (3). This stochastic process
is parametrized by the experimental values measured for the means, variances, cross-correlations and autocorrelations of the
three physiological variables.

C. Implementation

The implementation used to generate a lineage of cells according to the stochastic Helmstetter-Cooper model is described
in Algorithms 1 to 3. The simulations rely on the following input: (i) the means ⟨λ⟩, ⟨τcyc⟩ and ⟨si⟩; (ii) the variances
⟨δλ2⟩, ⟨δτ2

cyc⟩ and ⟨δs2
i ⟩; (iii) the Pearson cross-correlation coefficients ri j := r(xi, xj) defined above; and (iv) the Pearson

autocorrelation coefficients αi defined above. These inputs can be measured experimentally and were used to set the joint-
probability distribution of the physiological variables. Unless specified otherwise, we generated a single lineage of 10 000
cells in one simulation.

D. Comparison with experiments

We performed simulations according to the stochastic Helmstetter-Cooper for several experimental conditions (Comparison
of experimental measurements with simulations of the Helmstetter-Cooper model (1), Comparison of experimental
measurements with simulations of the Helmstetter-Cooper model (2), Comparison of experimental measurements
with simulations of the Helmstetter-Cooper model (3), Comparison of experimental measurements with simulations
of the Helmstetter-Cooper model (4), Comparison of experimental measurements with simulations of the Helmstetter-
Cooper model (4) and Comparison of experimental measurements with simulations of the Helmstetter-Cooper model
(5)). Overall, the agreement between experiments and simulations was good. For non-overlapping cell cycles conditions, most
of the distributions for the cell size at birth Sb, the cell size at division Sd, the generation time τ and the added size between
divisions ∆d = Sd − Sb were well reproduced. This observation was less true for overlapping cell cycles. For example in the
latter case, the distribution of division size predicted by stochastic Helmstetter-Cooper model was systematically broader than
the experimental one. In general, we found that the predicted correlations between variables were in good agreement with the
experimental measurements.

The simulations of the stochastic Helmstetter-Cooper model reproduced well the experimental behavior for cell size
homeostasis, namely the adder behavior. In Comparison of the experimental adder behavior with simulation of the



Algorithm 1: Stochastic Helmstetter-Cooper simulation.

Input:
• Means: µi = ⟨xi⟩, i = 1, 2, 3.
• Variances: σ2

i = ⟨δx2
i ⟩, i = 1, 2, 3.

• Pearson cross-correlations: ri j , for i, j = 1, 2, 3.
• Pearson autocorrelations: αi , i = 1, 2, 3.
• Number of generations to simulate: N .

Output: Lineage of N cells.
◃ Initialize model random vector generator

Define the covariance matrix Σ
for i = 1 to 3 do

σii = σ
2
i

for j = 1 to i − 1 do
σi j = σji = ri j ·

√
σii · σj j

end

end
Define the matrix S according to Equation (6)
Define the matrix D = Diag(α1, α2, α3)
Rn = ModelRandomVecGen(µ, S, D) ◃ implementation of Equation (3)
◃ Initialize time, size and physiological variables

t = 0, v = 1
x = Rn(µ)
◃ Initialize cell cycles

P = 0 ◃ log2 (Nori)
Allocate memory for {Ai}Pmax

i=1 ◃ array of initiation times

for i = 1 to Pmax do Ai = NULL

◃ Simulate lineage of cells

GenerateLineage(x,t,v,A,P,N ,Rn)

stochastic Helmstetter-Cooper model, we illustrate how the adder behavior converges toward the experimental value when
cross-correlations and autocorrelations are added to the model. Clearly, in the absence of cross-correlations and/or autocorre-
lations, the behavior deviates from the experimental measurements. This suggests that such correlations are essential for the
Helmstetter-Cooper model to reproduce the experimental cell size homeostasis behavior.

E. Co-regulation hypothesis of chromosome replication and division

The Helmstetter-Cooper is often interpreted as to impose a fixed cell cycle duration, τcyc. If in addition the growth rate is fixed,
Equation (2) implies that the cell size at division Sd is proportional to the cell size per origin of replication si at the initiation
event that led to the division. The response of division sizes is then linked to the response of initiation size to perturbations.
In particular, their Pearson autocorrelation coefficients are equal:

ρ(Sn+1
d , Sn

d ) = ρ(s
n+1
i , s

n
i ). (13)

In fact, the Pearson correlation coefficient for the adder at division (resp. at initiation) is uniquely related to the Pearson
autocorrelation coefficient of the cell size at division (resp. at initiation). Therefore, the previous equality implies:

ρ(∆d, Sb) = ρ(δi, si), (14)

where ∆d = 2Sn+1
b − Sn

b and δi = 2sn+1
i − sni .

When relaxing the condition that τcyc is fixed, Equation (14) no longer holds. In Co-regulation between division adder
and initiation adder in the stochastic Helmstetter-Cooper model, we investigated whether the two types of adder are still
equivalent when τcyc is allowed to fluctuate. We started from reference values for the parameters and then varied each of the
coefficient-of-variations (CVs), cross-correlation and autocorrelation away from their reference value. More accurately, the
CVs were varied between 1%-30% and the Pearson correlations between −0.9 and +0.9. However, we did not perturb ρ(λ, si)
and ρ(τcyc, si) because experimental data indicate that si should remain very robust to perturbations [S1].
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Comparison of experimental measurements with simulations of the Helmstetter-Cooper model (1). NCM3722 strain with no overlap-
ping cell cycles as in Figure 1D.



distributions and correlations of physiological parameters
(NCM3722,  MOPS + 0.2% glucose)

distributions and cross-correlations
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overlapping cell cycles as in Figure 1D.



distributions and correlations of physiological parameters
(MG1655,  M9 + 0.4% sodium acetate)

distributions and cross-correlations
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mother-daughter autocorrelations
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distributions and correlations of physiological parameters
(MG1655,  MOPS + 0.2% glucose)

distributions and cross-correlations
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mother-daughter autocorrelations
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Comparison of experimental measurements with simulations of the Helmstetter-Cooper model (4). MG1655 strain with two overlapping
cell cycles as in Figure 1D.



λ

mean = 0.76
CV = 17%

ρ = − 0.47 ρ = − 0.15 ρ = − 0.21 ρ = − 0.02 ρ = − 0.61

0 1 2

0

1

2ρ = − 0.20

τ c
yc

ρ = − 0.47 mean = 80.35
CV = 32%

ρ = − 0.46 ρ = 0.32 ρ = 0.17 ρ = 0.35 ρ = 0.23

s i

ρ = − 0.15 ρ = − 0.46 mean = 1.72
CV = 28%

ρ = 0.40 ρ = 0.06 ρ = 0.32 ρ = 0.42

S d

ρ = − 0.21 ρ = 0.32 ρ = 0.40 mean = 4.79
CV = 19%

ρ = 0.45 ρ = 0.44 ρ = 0.82

S b

ρ = − 0.02 ρ = 0.17 ρ = 0.06 ρ = 0.45 mean = 2.48
CV = 19%

ρ = − 0.38 ρ = − 0.07

τ

ρ = − 0.61 ρ = 0.35 ρ = 0.32 ρ = 0.44 ρ = − 0.38 mean = 55.27
CV = 39%

ρ = 0.74

λ

Δ d

ρ = − 0.20

τ cyc

ρ = 0.23

s i

ρ = 0.42

S d

ρ = 0.82

S b

ρ = − 0.07

τ

ρ = 0.74

Δ d

mean = 2.31
CV = 35%

λ

ρ = 0.34

τ cyc

ρ = 0.58

s i

ρ = 0.35

S d

ρ = 0.44

S b

ρ = 0.44

τ

ρ = − 0.10

0 1 2

Δ d
0

1

2ρ = − 0.07

distributions and correlations of physiological parameters
(MG1655 + pLR40,  MOPS + 0.4% gycerol + 11 amino acids)

distributions and cross-correlations

simulation

experiment

mother-daughter autocorrelations

DnaA oscillations: 4 h period, IPTG 0 and 25 μM

Comparison of experimental measurements with simulations of the Helmstetter-Cooper model (5). MG1655 strain transformed with
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Algorithm 2: Function GenerateLineage.

Function GenerateLineage(x,t,v,A,P,Nmax,Rn)
Input:

• x: physiological variables λ, τcyc and si.
• t: time.
• v: cell size.
• {Ai}Pmax

i=1 : array holding initiation times of active replication cycles.
• P: number of active replication cycles.
• Nmax: number of generations to simulate.
• Rn: random number generator (defined according to our model)

◃ Initializations

tb = t, vb = v, N = 1
◃ Start loop for cell generations

while N <= Nmax do
◃ Name physiological variables

λ = x1

◃ Initiate replications until division occurs

InitiateReplications(x,t,v,A,P,td)

◃ Cell division

vd = vb · exp (λ(td − tb))
dump N , tb, td, vb, vd, A0, λ, τcyc, si

◃ Update variables for next generation

N = N + 1, t = tb = td, v = vb = vd/2, P = P − 1
for i = 1 to P do Ai = Ai+1

◃ Draw next physiological variables from random vector generator

x = Rn(x)
end
return

We chose ⟨λ⟩ = ln 2, making the generation time ⟨τ⟩ = ln 2/⟨λ⟩ the unit of time. We chose ⟨si⟩ = 1 as unit of cell size.
We investigated values of ⟨τcyc⟩ = 0.5, 1.5, 2.5, corresponding to non-overlapping, 2 overlapping and 3 overlapping cell cycles,
respectively. The reference values for the CVs were:

CV(λ) = 10 %, CV(si) = 10 %. (15)

Note that for τcyc, we took different CVs for each scenario so as to keep the same amplitude of fluctuations in the cell cycle
duration. Specifically, we chose a standard deviation στcyc = 0.05, defining a CV of 10 % for the non-overlapping cell cycle
scenario but resulting in smaller CVs for the other. The reference matrix of cross-correlations was set to:

λ τcyc si
( )

λ 0 −0.5 0
τcyc −0.5 0 0
si 0 0.0 0

, (16)

and the reference autocorrelations were taken to be:

ρ(λn+1, λn) = 0.5, ρ(τn+1
cyc , τ

n
cyc) = 0, ρ(sn+1

i , s
n
i ) = 0.5. (17)

In Co-regulation between division adder and initiation adder in the stochastic Helmstetter-Cooper model panel A,
the co-regulation hypothesis from Equation (14) holds for non-overlapping cell cycles. For two and three overlapping cell
cycles, deviations from the co-regulation hypothesis are seen. This is due to the sources of noise still present in the system,
which tend to uncouple distant generations. For example, reducing the CV of the growth rate to CV(λ) = 1 % dramatically
reduces these deviations (not shown). Similarly, when increasing the noise in τcyc to στcyc = 0.1, deviations from the co-
regulation hypothesis are more pronounced (Co-regulation between division adder and initiation adder in the stochastic
Helmstetter-Cooper model panel B). However, despite the fact that other parameters can affect the division adder correlation



Algorithm 3: Function InitiateReplication.

Function InitiateReplications(x,t,v,A,P,td)
Input:

• x: physiological variables λ, τcyc and si.
• t: current time.
• v: current cell size.
• {Ai}Pmax

i=1 : array holding initiation times of active replication cycles.
• P: number of active replication cycles.

Output:

• td: next division time.

◃ Name physiological variables

λ = x1, τcyc = x2, si = x3

◃ Initializations

td = ∞, initiate = true
◃ Start loop for replication cycles

while initiate do
◃ Determine next division time

if P > 0 then td = A1 + τcyc

◃ Determine next initiation time

Nori = 2P

vi = si · Nori

δt = max[ 1
λ

ln ( vi
v ),0]

ti = t + δt

◃ Stop initiating if next initiation is after next division

if ti > td then
initiate = false

else
dump ti, vi, P

t = ti, v = vi, P = P + 1, AP = ti
end

end
return

(especially for overlapping cell cycles), the effect of the unit cell autocorrelation ρ(sn+1
i , s

n
i ) on the value of ρ(∆d, Sb), was

more systematic than cross-correlations or CVs. Therefore we concluded that even when fluctuations are introduced into the
Helmstetter-Cooper model, altering the homeostasis of si should affect the cell size homeostasis.

F. Adder properties

The size autocorrelation can be used to characterize the cell size behavior. We focus now on the division size properties, yet
the following development can also be applied to the initiation size.

We denote p(Sn
d , S

n+1
d ) the joint probability distribution of cell size at division for a pair of mother/daughter cells. In

the first approximation, we assume it is a Gaussian bivariate distribution with means ⟨Sn
d ⟩ = ⟨S

n+1
d ⟩ = µ(Sd) and covariance

matrix:

σ2
(
1 γ
γ 1

)

, (18)

with σ = µ(Sd) · CV(Sd). Consequently, the conditional value of the daughter division size is obtained as (see appendix A):

⟨Sn+1
d | Sn

d ⟩ = γSn
d + (1 − γ)µ(Sd). (19)

The added size between division for generation n is expressed as

∆
n
d = Sn

d − Sn
b ,

= 2Sn+1
b − Sn

b ,
(20)
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between physiological variables. The experimental data for each condition were used to set the mean values, coefficient-of-variations and
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assuming symmetric division. Using the previous equation, one can show that:

CV(∆d) =
√

5 − 4γCV(Sd),
⟨∆d |Sb⟩ = (2γ − 1)Sb + 2(1 − γ)µ(Sb).

⟨δ∆dδSb⟩ = (2γ − 1)⟨δS2
b⟩,

ρ(∆d, Sb) =
2γ − 1
√

5 − 4γ
.

(21)

The last expression is shown in Functional dependence of ρ(∆d, Sb) on ρ(Sn
d
, Sn+1

d
). Therefore, when γ = 1/2, the adder

principle holds, meaning that the added size is independent of birth size: ⟨δ∆dδSb⟩ = 0 (or ρ(∆d, Sb) = 0).

II. THRESHOLD MODELS IN BALANCED GROWTH

A. Control of replication initiation

Replication initiation is influenced by several factors, the most important being probably the DnaA protein [S17–S19]. The
DnaA protein is active when bound to ATP (DnaA-ATP) and inactive when bound to ADP (DnaA-ADP). While both active and
inactive forms can bind the oriC, evidence indicates that only the active form can trigger initiation [S20]. Approximately 10-20
DnaA-ATPs are required at the oriC to form a functional complex that can lead to replication initiation [S21]. Here we neglect
the role of DnaA-ADP, namely as a competitor to oriC binding. We therefore consider that replication initiation is under the
exclusive control of DnaA-ATP. DnaA binds primarily ATP after being synthesized in the cytoplasm [S18,S19], therefore the
DnaA-ATP production coincides with the DnaA production. For these reasons we will abusively denote DnaA-ATP as DnaA,
which we consider as the replication initiator. We also adopt the simple autorepressor model for the dnaA operon [S22], i.e.

the DnaA protein is maintained at a nearly fixed concentration by repressing its own expression.
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Co-regulation between division adder and initiation adder in the stochastic Helmstetter-Cooper model [Equation (14)]. (A) στcyc =

0.05. (B) στcyc = 0.1, with στcyc = ⟨τcyc⟩ · CV(τcyc).

B. Control of division

Z-ring formation is the predominant division process prior to constriction [S23]. Once the Z-ring is functional, division and
cell wall machinery proteins bind to this scaffold in order to complete cytokinesis. The Z-ring is made of protofilaments of
the essential protein FtsZ. In our experimental assays, we have adopted a nearly functional FtsZ-mVenus fusion protein [S24]
in order to monitor the assembly of the Z-ring in single-cells. Our observations suggest that FtsZ accumulates to a threshold
at the Z-ring. Indeed, the maximum intensity (in a cell life time) at the Z-ring was found to be independent of the cell size at
division. This means that on average a fixed, critical amount of FtsZ in the Z-ring is required to trigger the assembly of the
division machinery and cell constriction. This threshold mechanism parallels the control of replication initiation by DnaA.

In addition, our experimental assays also suggested that the concentration of FtsZ remains relatively constant during the
division cycle, and across many generations. As far as we know, the FtsZ protein does not repress its own expression, like
DnaA does. However, we explain this fixed concentration at steady state by postulating that FtsZ production is in balanced
growth (see section III).

C. Threshold model

Let us now consider a generic protein responsible for the initiation of cell division (note that the same reasoning applies for
the control of replication initiation). We assume that this protein accumulates and triggers cell division when its copy number
N reaches a fixed threshold:

N(td) = N0. (22)

Following cell division, each daughter cell receives N0/2 copies of the protein. Under balanced growth (see section III),
the protein copy number increases in proportion to the cell volume:

dN

dt
= c∗

dS

dt
, (23)
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where c∗ is the steady-state protein concentration. Therefore, one obtains that the added volume from birth to division is given
by:

Sd − Sb =
N0

2c∗
, (24)

which is the adder principle.
The fixed threshold N0 does not necessarily imply that the cell physically senses the copy number N of proteins in the

cytoplasm. Instead, N can be a proxy for the number of initiators bound to a cell compartment, namely the Z-ring. For
example, let us assume that the binding/unbinding dynamics of the proteins in the cytoplasm (N) with a cell compartment
(with copy number n) can be modeled with the linear system:

dn

dt
= αN − βn,

dN

dt
= −αN + βn + λc∗S.

(25)

In the previous system, α and β are the rates of binding and unbinding to the cellular compartment, respectively. λc∗S

is the production rate of proteins in the cytoplasm in balanced growth (see section III). Denoting X = n + N , and assuming
exponential growth of the cell volume at the rate λ, we immediately have:

X(t) = X(0) + c∗ (S(t) − S(0))
︸!!!!!!!!!︷︷!!!!!!!!!︸

∆S(t)

. (26)

Using the previous equation, we obtain:

n(t) = n(0)e−(α+β)t +
α

α + β
(X(0) − c∗S(0))(1 − e−(α+β)t )

+
α

α + β + λ
c∗(S(t) − S(0)e−(α+β)t ),

≈
α

α + β

(

X(t) − c∗S(t)
(

1 −
α + β

α + β + λ

))

,

≈
α

α + β

(

X(t) − c∗S(t)
λ

α + β

)

,

(27)

where in the first approximation we assumed that (α + β)−1 ≪ t, and in the second approximation that λ ≪ α + β. Therefore,
as long as the elongation rate is much smaller than the binding/unbinding rates, the copy number of proteins bound to the cell
compartment can be seen as a fixed fraction of the total copy number: n = α/(α+ β)X , and similarly N = β/(α+ β)X . In other
words, the protein dynamics is fast compared to growth of the cell, therefore the cytoplasm reservoir and the cell compartment



are always at equilibrium. When λ becomes comparable to α + β, deviations from this equilibrium appear. Namely, the
number of proteins bound to the cell compartment is below its equilibrium value: n < α/(α+ β)X , meaning that some delay is
observed for the cell compartment to reach its threshold. For simplicity, we have considered here that the cytoplasm reservoir
and cell compartment are at equilibrium. Eventually, a threshold n0 to be reached in the cell compartment translates into a
threshold N0 to be reached in the cell cytoplasm, and in a global threshold X0 to be reached for the total protein copy number.

D. Relation to cell size homeostasis

We now consider the general case where c∗ is subject to fluctuations, and focus on the division size homeostasis. The same
reasoning applies to the initiation size homeostasis. Using the definition c(td) = N0/S(td), the Pearson correlation coefficient
for division size between consecutive generations is:

ρ
(
Sn

d , S
n+1
d

)
= ρ

(
1

c(tnd )
,

1

c(tn+1
d )

)

, (28)

where tnd and tn+1
d are the times at division for generations n and n + 1. Provided that the fluctuations in concentration are not

too large, the previous expression can be approximated to (see appendix A):

ρ
(
Sn

d , S
n+1
d

)
≈ ρ

(
c(tnd ), c(t

n+1
d )

)
, (29)

Therefore, cell size homeostasis appears to be linked to the initiator concentration homeostasis. In particular, if fluctuations
in the protein concentration occur on time scales much shorter than the generation time, the division size correlation between
consecutive generations should vanish, resulting in a “sizer” behavior.

We now relate the mother/daughter division concentrations correlation from Equation (29) to the time autocorrelation of
the protein concentration. Let us consider L lineages of cells in a time interval [0,W]. Let us denote by ca,i the concentration
at division for the cell corresponding to generation i of lineage a. The mother/daughter concentration correlation is computed
as:

⟨c(tnd )c(t
n+1
d )⟩ =

1
W

W−1∑

i=0

1
L

L∑

a=1

ca,ica,i+1. (30)

The previous average should converge to a fixed value for large W and large L. We now assume ergodicity. Specifically,
the average in the previous equation with W →∞ and L = 1 is equal the average with W = 1 and L →∞:

⟨c(tnd )c(t
n+1
d )⟩ = lim

W→∞

1
W

W−1∑

i=0

cici+1,

= lim
L→∞

1
L

L∑

a=1

ca,0ca,1.

(31)

Let us introduce the conditional probability distribution p(t ′ |t) that a daughter cell divides at times t ′ given that its mother
cell divided at time t. We rewrite the last expression as:

⟨c(tnd )c(t
n+1
d )⟩ = lim

L→∞

1
L

L∑

a=1

∞∫

0

dt p(t0 + t |t0)ca(t0)ca(t0 + t),

≈ lim
L→∞

1
L

L∑

a=1

ca(t0)ca(t0 + τ),

= ⟨c(t0)c(t0 + τ)⟩,

(32)

where in the approximation, we assumed p(t ′ |t) = δ(t ′ − t − τ). This approximation is valid as long as the fluctuations of
the concentration are small in an interval [τ − στ, τ + στ] centered around the average generation time τ, with στ being the
width of its distribution (the typical fluctuations of the generation time). In the last expression, the concentration c(t) should
be understood as a continuous stochastic process. Therefore, to a particular lineage of cells a corresponds one stochastic



continuous process ca(t). The brackets means that an average is taken over all the realizations of {ca(t)}a=1...L . The previous
equation is also valid for the centered concentration δc(t) = c(t) − ⟨c⟩. As a result, we obtain:

ρ
(
Sn

d , S
n+1
d

)
= ρ

(
1
cnd
,

1

cn+1
d

)

,

≈ ρ
(
cnd , c

n+1
d

)
,

≈ ρ [c] (τ),

(33)

where:

ρ [c] (t) =
⟨δc(t0)δc(t0 + t)⟩

δc2
. (34)

E. Adder property

In the next section, we will show that under balanced growth, ρ[c](τ) = 1/2. From Equation (33), and using the relations from
Equation (21), we conclude that:

ρ(∆d, Sb) = 0, (35)

which is an other formulation of the adder principle.

III. REPROGRAMMING CELL SIZE HOMEOSTASIS BY BREAKING BALANCED GROWTH

A. Balanced growth

Consider a type of protein whose mass fraction in the cell is φ∗ at steady state. If we denote by m the mass of these proteins,
and M the total dry mass of the cell, we have in balanced growth [S25,S26]:

dm

dt
= φ∗

dM

dt
. (36)

To reformulate the previous equation in terms of the protein copy number N in the cell, we introduce the mass of one
protein mP , the cell volumic mass ρc and the cell size or volume S. A simple rewriting leads to:

dN

dt
= c∗

dS

dt
, (37)

where c∗ = φ∗ρc/mP is the protein concentration at steady state. The protein concentration is c = N/S, thus satisfies the first
order differential equation:

dc

dt
+ λc = λc∗. (38)

In Equation (38), steady state is achieved when the protein synthesis rate per unit of volume, λc∗, balances the decrease in
protein concentration due to dilution, λc.

B. Time-dependent production rate

Let us suppose now that the production rate in Equation (38) is not constant. Instead, the protein synthesis allocation is a
time-dependent function p(t). The protein concentration obeys the differential equation:

dc

dt
+ λc = λp(t), (39)

The solution of this ODE is:

c(t) = c(0)e−λt + λ
t∫

0

ds e−λ(t−s)p(s). (40)

When the production rate is a periodic function of time, the steady state solution for the protein concentration will also be a
periodic function with same period. For example, we give c(t) for the cases of cosine and periodic square production rates
in Protein concentration for a cosine production rate and Protein concentration for a periodic production rate with
pulses. In practice, a time-dependent production rate can be achieved by imposing a time-dependent induction of a promoter.
In particular, a periodic square production is obtained by switching between a medium without the inducer and a medium with
the inducer every half-period.



p(t) c∗
(
1 + µ sin2 (ωt/2)

)

c(t) (c(0) − c∞(0)) e−λt + c∞(t)
c∞(t)/c∗ 1 + µ(1 − cos ϕ cos (ωt − ϕ))/2
Notations ω = 2π/T

tan ϕ = ω/λ

Protein concentration for a cosine production rate.

p(t) c∗ (1 + µS(t))
c(t) (c(0) − c∞(0)) e−λt + c∞(t)
c∞(t)/c∗ 1 + µ

(
ψ(a)e−λrT +

(
1 − e−λ(r−a)T

)
S(t)

)

Notations t = (n + r)T , where n is the integer part of t/T and 0 ≤ r < 1.

S(t) =

{
0 if r < a,

1 otherwise.
ψ(a) = (1 − e−λ(1−a)T )/(1 − e−λT )

Protein concentration for a periodic production rate with pulses. The periodic square function is obtained when a = 1/2.

C. Stochastic production rate

Here we consider that the protein synthesis allocation undergoes stochastic fluctuations. The protein concentration obeys the
differential equation:

dc

dt
+ λc = λ(p(t) + η(t)), (41)

where η(t) is a Gaussian white noise such that ⟨η(t)⟩ = 0 and ⟨η(t)η(t ′)⟩ = 2Γδ(t − t ′). The brackets denote an average over
different realizations of the noise, for example over many different cells subject to the same production rate (e.g. through
the same induction). We may decompose the deterministic and stochastic contributions by writing c(t) = ⟨c(t)⟩ + y(t). The
average concentration ⟨c(t)⟩ follows the deterministic ODE in Equation (39) while the fluctuations around the average are
expressed as:

y(t) = λ
t∫

0

ds e−λ(t−s)η(s). (42)

Being a sum of Gaussian random variables y(t) is also a Gaussian random variable, with mean ⟨y(t)⟩ = 0, and variance:

⟨y(t)2⟩ = λ2

t∫

0

ds

t∫

0

ds′ e−λ(2t−s−s
′)⟨η(s)η(s′)⟩,

= Γλ
(
1 − e−2λt

)
,

−−−−→
t→∞

Γλ.

(43)

Similarly, the two-point correlation is:

⟨y(t0)y(t0 + t)⟩ = Γλe−λt
(
1 − e−2λt0

)
−−−−→
t0→∞

Γλe−λt . (44)

D. Concentration autocorrelation

In section II we have presented a model in which cell size homeostasis is driven by the autocorrelation function of division
proteins concentration. Here we first give this time autocorrelation function in balanced growth, when the production rate of
these protein is fixed. We then show how the autocorrelation function is modified when the production rate oscillates.

D1) Fixed production rate

In balanced growth, the production rate of proteins is fixed, namely p(t) = φ∗. Thus ⟨c⟩ = c∗. The Pearson time autocorrelation
coefficient for protein concentration is defined as:

ρ[c](t) =
⟨δc(t0 + t)δc(t0)⟩

⟨δc2⟩
, (45)



where δc(t) = c(t)− ⟨c⟩ and the brackets denote an average over different realizations of the stochastic process in Equation (41)
(i.e. different lineages). Using Equation (44), we obtain

ρ[c](t) = e−λt . (46)

In particular, for t = τ = ln 2/⟨λ⟩, we have ρ[c](τ) = 1/2, which together with Equation (33) ensures the adder behavior for
cell size homeostasis in balanced growth.

D2) Time-dependent production rate

For a time-dependent production rate, the expression in Equation (45) must be revised because time translational invariance is
broken, and it is necessary to take into account variations in time for the production rate. In particular, the average concentration
⟨c(t)⟩ is a function of time. For a periodic production rate with period T , ergodicity can still be assumed, but Equation (31) is
modified to:

c(tnd )c(t
n+1
d ) = lim

W→∞

1
W

W−1∑

i=0

cici+1,

= lim
L→∞

1
L

L∑

a=1

T∫

0

dt0 ca,0(t0)ca,1(t0),

(47)

where ca,0(t0) and ca,1(t0) denote the concentrations of division proteins at division for a pair of mother/daughter cells such
that the mother divides at t0. We used a bar symbol for this average to make a distinction from the previous average with
brackets. Thus, Equation (32) becomes:

c(tnd )c(t
n+1
d ) =

1
T

T∫

0

dt0 ⟨c(t0)c(t0 + τ)⟩, (48)

where the brackets as before denote an average over different lineages. The average concentration now reads:

c =
1
T

T∫

0

dt ⟨c(t)⟩. (49)

We rewrite the connected correlation for mother/daughter concentrations at division:

δc(tn+1
d )δc(tnd ) =

(
c(tn+1

d ) − c)(c(tnd ) − c
)
,

=
1
T

T∫

0

dt0 ⟨δc(t0 + τ)δc(t0)⟩,
(50)

where δc(t) = c(t) − c and τ is the mean generation time.
The last expression in Equation (50) is the two-point correlation evaluated at t = τ. It can be decomposed as a sum of a

deterministic contribution due to the time variations of the production rate, and a stochastic contribution due to the stochasticity
in Equation (41):

S(t) =
1
T

T∫

0

dt0 ⟨δc(t0 + t)δc(t0)⟩,

=
1
T

T∫

0

dt0 (⟨c(t0)⟩ − c) (⟨c(t0 + t)⟩ − c)

︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸
deterministic

+
1
T

T∫

0

dt0 ⟨y(t0)y(t0 + t)⟩

︸!!!!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!!!!︸
stochastic

,
(51)

where as before y(t) = c(t) − ⟨c(t)⟩. Finally, the Pearson time autocorrelation coefficient is expressed as:

ρ[c](t) =
S(t)
S(0)

(52)



For example, for a cosine production rate (Protein concentration for a cosine production rate), we find:

S(t) =
1
2

( µ
2

c∗ cos ϕ
)2

︸!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!︸
A

cos (ωt) + ⟨δc2⟩e−λt . (53)

There are two contributions in the two-point correlation from the previous expression. The second is due to the inherent
stochasticity in the protein production, while the first is imposed by the specific shape of the production rate function. We see
that a careful choice of the amplitude of the oscillations µ, and of the period of the oscillations T (which determines the value
of cos ϕ), can lead to S(τ) < 0. For example, taking T = 2τ leads to:

ρ[c](τ) =
1
2
⟨δc2⟩ − 2A

⟨δc2⟩ + A
, (54)

which can be made negative by increasing µ. Similarly, taking T = 4τ leads to:

ρ[c](τ) =
1
2
⟨δc2⟩
⟨δc2⟩ + A

, (55)

which is smaller than the value of 1/2 from balanced growth and converges to zero when increasing µ. As can be seen,
the adjustable parameter to tune the autocorrelation coefficient is the ratio ⟨δc2⟩/A which essentially quantifies the stochastic
fluctuations of protein concentration versus the amplitude of the induced oscillations of mean protein concentration. In
particular when ⟨δc2⟩ ≫ A, one retrieves the static result: ρ(τ) → 1/2. On the contrary in the limit of vanishing noise
⟨δc2⟩ ≪ A, one obtains as expected ρ[c](τ) = −1 when T = 2τ and ρ[c](τ) = 0 when T = 4τ.

An undesired property of the time-autocorrelation function obtained from Equation (53) is that for a period T ≫ τ, it does
not converge to the exponential function from balanced growth. This comes from the fact that deviations in the concentration
are taken with respect to the total average defined in Equation (49). However, when T ≫ τ, the concentration is approximately
constant in time intervals of length τ. Namely, when analyzing fluctuations, deviations should be considered around the
average concentration in this interval, say [t, t + τ], rather than the average in Equation (53). To circumvent this problem, we
define the concentration average in a window of size Tw:

Ew(c)(t) =
1

Tw

Tw∫

−Tw

ds ⟨c(t + s)⟩. (56)

Substituting c̄← Ew(c)(t) in Equation (51), we obtain for the cosine induction:

S(t) =
1
2

(
µ

2
c∗ cos ϕ

(

1 − sinc

(
ωTw

2

)))2

︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸
A

cos (ωt) + ⟨δc2⟩e−λt, (57)

where sinc(x) = sin (x)/x. Effectively, this corresponds to rescaling the amplitude by a factor (1− sinc(ωTw/2)). Considering
that the generation time is the relevant time-scale for studying protein concentration fluctuations, we may take for simplicity
Tw = 2τ. Therefore ωTw/2 = 2πτ/T , and for T ≫ τ, we retrieve the exponential function in Equation (46) corresponding to
a fixed induction, namely balanced growth. With such a definition, we show in Concentration autocorrelation function for
a cosine induction or for a square induction how the concentration time-autocorrelation function varies when the induction
amplitude µ and the period of oscillations T are changed for both cosine and square inductions.

E. Simulations of the combined thresholds model

We used simulations to generate lineages of cells according to the combined thresholds model. Here we start considering
the growth rate is time-dependent, as discussed in appendix B. Following Equation (94), we assume that each cell grows
exponentially its size according to:

dS

dt
= λ(t)S(t). (58)

To describe the time-evolution of the instantaneous growth rate λ(t), we linearized Equation (97) around the steady state
growth rate λ∗, and introduced stochastic fluctuations:

dλ
dt
= λ∗(λ∗ − λ(t)) + σλ

√
2λ∗η(t), (59)
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Concentration autocorrelation function for a cosine induction or for a square induction. (A) Dependence of the autocorrelation
function on the amplitude of induction µ (we used a period T = 4). (B) Dependence of the autocorrelation function on the period of
induction T (we used an amplitude µ = 1). The autocorrelation functions were computed by simulating the stochastic dynamics as defined
in Equation (41) for 10 000 trajectories and using Equation (51). We defined the generation time τ = ln 2/λ as unit of time and we defined
the unit of concentration so that the lower steady state value is c∗ = 1. The level of noise was set by taking

√
Γλ = 0.1, so that the CV of

the concentration for a constant induction is 10 %. To compute the autocorrelation we used the running window average from Equation (56)
with Tw = 2τ instead of the total average from Equation (49). The autocorrelation function for a constant production rate, i.e. 2−t/τ , is
denoted by a black line.

where η(t) is a Gaussian white noise with correlator ⟨η(t) · η(t ′)⟩ = δ(t ′ − t). The normalization ensures that the linearized
process (Ornstein-Uhlenbeck type) is such that the growth rate fluctuations at steady-state are ⟨δλ2⟩ = σ2

λ . Similarly to
describe the time-evolution of the concentration of initiation proteins, cI, and of the concentration of division proteins, cD, we
linearized Equation (100) around the steady states c∗I and c∗D, and introduced stochastic fluctuations:

dcI

dt
= λ∗(c∗I − cI(t)) + σI

√
2λ∗η(t),

dcD

dt
= λ∗(c∗D − cD(t)) + σD

√
2λ∗ξ(t),

(60)



where ⟨η(t) · η(t ′)⟩ = δ(t ′ − t) and ⟨ξ(t) · ξ(t ′)⟩ = δ(t ′ − t). Again, the normalizations ensure that the fluctuations of protein
concentrations at steady state are such that ⟨δc2

I ⟩ = σ
2
I and ⟨δc2

D⟩ = σ
2
D. Note that in our implementation, the steady state

concentrations c∗I and c∗D are time-dependent too since they vary with the induction level of the protein of interest. However,
due to the periodic square induction, they remain constant between switches.

Initiation occurred when the total copy number of of initiation proteins per origin reached a fixed threshold: cI ·S = nI
0×NoriC.

Similarly, division occurred when the total copy number reached a fixed threshold: cD · S = nD
0 . The practical implementation

is described in Algorithms 4 to 6.
We have applied this method to simulate oscillation experiments performed in the laboratory. In Overlay of experimental

results and simulation of the combined threshold model, we used λ∗ = 0.57 h−1, σλ/λ∗ = 25 %, nI
0 = 200, nD

0 = 1000,
nI

0/cI = 2 µm, σI/c∗I = 10 %, nD
0 /cD = 4.5 µm, σD/c∗D = 20 %, a C period of 40 min. Note that for simplicity, we expressed

concentrations per unit of length since the cell width is constant. We generated 100 lineages of 100 cells. As can be seen in
Overlay of experimental results and simulation of the combined threshold model panel A, the experimental distributions
are well reproduced in our simulations. Similarly the adder plot is consistent with experimental data (Overlay of experimental
results and simulation of the combined threshold model panel B). The autocorrelation function for the concentration
of division proteins is well reproduced for short times, however some discrepancies arise from intermediate to long times
(Overlay of experimental results and simulation of the combined threshold model panel C). We suspect this is due to
some uncontrolled noise in our experimental readout for division protein concentration, because we use a fluorescent signal
as a proxy. Similarly the autocorrelation function for division proteins is in good agreement with experimental data for short
lags and more discrepancy arise for long lags (Overlay of experimental results and simulation of the combined threshold
model panel D). Finally note the agreement between our model and the experimental measurements for protein concentration
dynamics is very good (Overlay of experimental results and simulation of the combined threshold model panel E). The
second plot emphasizes that our model for protein concentration dynamics based on balanced growth (Equations (97) and (100))
and instantaneous change in the fixed protein allocation c∗ is accurate. The third plot in Overlay of experimental results and
simulation of the combined threshold model panel E uses the threshold model assumption cD(td) · S(td) = nD

0 . Despite some
discrepancy, probably due to the simplicity of this model, we note a good agreement with the observed oscillations of cell size.

Algorithm 4: Combined threshold models simulation.

Input:
• Mean growth rate ⟨λ⟩.
• Steady state concentration of replication initiators c∗I (t) (can be time-dependent).
• Steady state concentration of division initiators c∗D(t) (can be time-dependent).
• CV for growth rate: CV(λ).
• CV for concentration of replication initiators: CV(cI).
• CV for concentration of division initiators: CV(cD).
• Threshold for replication initiators, nI

0.
• Threshold for division initiators, nD

0 .
• Number of generations to simulate per lineage: N .
• Number of lineages to simulate: L.
• Time resolution: ∆t.
• C-period: C.

Output: L lineages of N cells.
◃ Initial time and size

t = 0, v = 1
◃ Initialize array of steady state functions

Allocate memory for {x∗i }
4
i=1 ◃ array of steady state functions

x1 = NULL, x2 = ⟨λ⟩, x3 = c∗I , x4 = c∗D
◃ Initialize array of CVs

Allocate memory for {ηi}4
i=1 ◃ array of CVs

η1 = NULL, η2 = CV(λ), η3 = CV(cI), η4 = CV(cD)
◃ Simulate lineages of cells

for l = 1 to L do

GenerateLineage(t,v,x∗,η,nI
0, nD

0 , N , ∆t,C)

end



0 1 2 3 4
τ

CV=76%
CV=58%

0 2 4 6 8
Δ d

CV=97%
CV=65%

0 5 10 15
c D

CV=73%
CV=30%

1 2 3
S b

CV=36%
CV=31%

−1 0 1 2 3
λ

CV=32%
CV=24%

2 4
S d

CV=48%
CV=31%

exp
sim

A oscillation period:  240 min
growth rate: 0.57 h-1

B

0 2 4 6 8
generation

0.0

0.2

0.4

0.6

0.8

1.0

D

0 200 400 600 800 1000 1200

2

4

c *

0 200 400 600 800 1000 1200
0

1

2

c
t

c 
(

)/

0 200 400 600 800 1000 1200

time [min]

0

1

2

S
S 

d
d 

/

E

C

0 2 4 6 8
time [τ]

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

∆
d
 /

  <
∆

d
>

S
b
 /  <S

b
>

distributions of cellular variables

division adder concentration ACF cell size ACF

dynamics of division size

Overlay of experimental results and simulation of the combined threshold model



Algorithm 5: GenerateLineage function for threshold models simulation.

Function GenerateLineage(t,v,x∗,η,nI
0, nD

0 , Nmax, ∆t,C)
Input:

• Initial time t.
• Initial volume v.
• Array of steady state functions x∗.
• Array of CVs η.
• Threshold for replication initiators, nI

0.
• Threshold for division initiators, nD

0 .
• Number of generations to simulate: Nmax.
• Time resolution: ∆t.
• C-period: C.

◃ Initialize state vector

Allocate memory for {xi}4
i=1 ◃ array of variables

x1 = v, x2 = x∗2(t), x3 = x∗3(t), x4 = x∗4(t)
◃ Initialize replication cycles

P = 0, Nori = 1

Allocate memory for {Ai}Pmax
i=1 ◃ array of initiation times

for i = 1 to Pmax do Ai = NULL

◃ Start loop on cell generations

N = 1
while N <= Nmax do

◃ Write birth state

dump t, x, Nori,x∗,N
while true do

◃ Deterministic integration

t ′ = t + ∆t

dx = dxDeterministic(t, x, t ′, x∗)

◃ Stochastic integration

dx = dx + dxStochastic(t, x, t ′, x∗, η, ∆t)

◃ Update values

t = t ′, x = x + dx

◃ Track cellular events

Initiate(t,x, Nori, P, A) ◃ initiation

Terminate(t,x, Nori, P, A,C) ◃ termination

mustDivide = Divide(t,x,nD
0 ) ◃ division

if mustDivide then break
◃ Write

dump t, x, Nori,x∗,N
end
◃ Symmetrical division

x1 = x1/2, Nori = max(Nori/2, 1), N = N + 1
end



Algorithm 6: Functions for threshold models simulation.

Function dxDeterministic(t, x, t ′, x∗, ∆t)

Allocate memory for {dxi}4
i=1 ◃ array of displacements

dx1 = x2 · x1 · ∆t ◃ exponential volume growth

dx2 = x∗2(t) · (x
∗
2(t) − x2) · ∆t

dx3 = x∗2(t) · (x
∗
3(t) − x3) · ∆t

dx4 = x∗2(t) · (x
∗
4(t) − x4) · ∆t

return
Function dxStochastic(t, x, t ′, x∗, η)

Allocate memory for {dxi}4
i=1 ◃ array of displacements

Draw 4 random unit Gaussian variables {ξi}4
i=1

dx1 = 0

dx2 = η2 · x∗2(t) ·
√

x∗2(t) ·
√

2∆t · ξ2

dx3 = η3 · x∗3(t) ·
√

x∗2(t) ·
√

2∆t · ξ3

dx4 = η4 · x∗4(t) ·
√

x∗2(t) ·
√

2∆t · ξ4

return
Function Initiate(t, x, Nori, P, A, nI

0)

if x1 · x3/Nori ≥ nI
0 then

P = P + 1, Nori = 2 · Nori, AP = t

end
return

Function Terminate(t, x, Nori, P, A, C)

if P > 0 then
if t − A1 > C then for i = 1 to P do Ai = Ai+1

P = P − 1
end
return

Function Divide(t, x, nD
0 )

if x1 · x4 ≥ nD
0 then

return true
else

return false
end



Parameter Campos et al. Notation

Growth rate α λ

Size at birth Lb Sb

Size at division Ld Sd

Added size from birth to division ∆L ∆d

Added size between X-events ∆L∗ ∆d

Elapsed time between birth and division T τ

Elapsed time between X-event and division δt τX

Correspondence with notations in Campos et al. [S12].

IV. DISCUSSION ON THE PHASE-SHIFTED MODEL PREVIOUSLY REPORTED

A. Overview

In their paper [S12], Campos and colleagues presented experimental evidences of a “constant elongation model”, stating that
each individual cell grows in average of a constant mass between birth and division. This result is also known today as the
adder principle [S13]. Comparison of the distributions of the added size and of the birth size between experimental data and
simulations served to validate this model.

They also used their results to discredit the conjecture that replication initiation and division are coupled. Specifically,
they considered the alternative hypothesis that instead cells would add a constant mass between specific events (“X-events”)
of the cell cycle, such as chromosome replication initiation. This defined a “phase-shifted model”. By comparison with
their experimental results, they rejected such as model and concluded that the “constant elongation model” must hold and
that division is therefore not coupled to a replication initiation event. In this comparative analysis, two main points were put
forward. (i) The distribution of the added size between cell birth and cell division, ∆L, and the distribution of the cell size
at birth, Lb, were aberrantly broad in simulations of the phase-shifted model. These wide fluctuations were attributed by the
authors to the fact that the number of X-events per generation could fluctuate a lot. (ii) The phase-shifted model resulted in
correlations between mother/daughter cells for ∆L, in contradiction with the absence of correlations seen in experimental data.
The authors argued that this is because the added size between X-events can overlap several generations in the phase-shifted
model, resulting in correlation in ∆L.

In this section, we will show instead that the wide fluctuations obtained result from the choice of parameters for the
phase-shifted model. Actually, it will appear that the cell size convergence in the phase-shifted model critically depends on
the value of the phase shift. Specifically, it can deviate significantly from the adder convergence, and even become an unstable
model. We conclude this discussion by suggesting an alternative model for the cell cycle. This model relies on an adder
principle holding between replication initiation events, and assume that division and replication initiation are coupled. Yet for
this model, cell size convergence is consistent with adder and the simulated data would be consistent with the experimental data
from Campos and colleagues [S12]. Altogether, this suggests that discarding the co-regulation hypothesis between replication
initiation and division based on the simulation results of the phase-shifted model is not reasonable.

B. Cell size convergence with the phase-shifted model

To be consistent with our manuscript we adopt notations different from Campos and colleagues. The correspondence between
their and our notations are summarized in Correspondence with notations in Campos et al..

B1) Model

We now describe the phase-shifted model proposed by Campos and colleagues [S12]. First, they assumed that cells elongate
their size exponentially according to Equation (1). Second, they introduced a cellular event, denoted by the lower script X ,
which determines division timing. Specifically, provided that a cellular event occured at time tX, cell division is bound to
happen at time td = tX + τX. Such an event does not necessarily coicinde with cell birth. Instead, it will typically represent
chromosome replication initiation. Also, the cellular event triggering cell division may occur in the mother cell or other
ancestors. In this model, cell division timing is therefore related to the timing of these specific cellular events, or “X-events”.
Third, they proposed that an X-event occurs when a fixed size ∆d has been added since the last X-event. More accurately, we
introduce the quantity ∆XS which is reset to ∆XS = 0 when an X-event occurs, and otherwise increases according to:

d∆XS

dt
=

dS

dt
. (61)



In particular, if the last X-event happened in the current generation, then:

∆XS = S − SX (62)

Yet if the last X-event happened in the previous generation (say with index n − 1), then:

∆XS = (S − Sb) + (S
(n−1)
d − S

(n−1)
X ). (63)

Whenever the added size since the last X-event reaches a fixed quantity, ∆XS = ∆X, an X-event occurs and ∆XS is reset to
zero.

B2) Cell size convergence for small perturbations

We now investigate the convergence of cell size from a perturbed initial value in the phase shifted model. We distinguish
two cases, depending on the value of τX compared to the generation time τ = ln 2/λ. Note that the results below are derived
assuming that there is exactly one X-event per generation. In order for this assumption to hold, we restrain ourselves to small
perturbations around the steady state cell size value. For larger perturbations, multiple X-events may occur in one generation,
which will be dealt with numererically in the next section.

B3) Case 1: 0 ≤ τX < τ

In this scenario, the X-event leading to cell division occurs in the same generation. As such the division size is expressed as:

S
(n)
d = S

(n)
X eλτX

︸︷︷︸
α

. (64)

Therefore the convergence in cell size at division, is determined by the convergence of S
(n)
X . We now express the cell size

at the X-event:

S
(n)
X = S

(n)
X −

1
2

S
(n−1)
d +

1
2

S
(n−1)
d ,

= ∆X +

(
1 −

α

2

)
S
(n−1)
X ,

(65)

where we used that S
(n)
X − S

(n−1)
d /2 = ∆X − (S

(n−1)
d − S

(n−1)
X ). This is a first order recurrent series. We obtain:

S
(n)
d =

(
S
(0)
d − S

(∞)
d

)
rn + S

(∞)
d , with

{
S
(∞)
d = 2∆X,

r = 1 − α/2.
(66)

Note that Equation (65) holds only when there is one X-event per generation. Namely, if S
(n−1)
d − S

(n−1)
X > ∆X, then

S
(n)
X = S

(n−1)
X +∆X instead. In Equation (66), we see that cell size converges exponentially to the steady state value S

(∞)
X . When

τX = 0, we obtain r = 1/2 which is the adder convergence. Indeed, in the latter case, the phase-shifted model reduces to the
adder principle [S13]. However, when τX > 0, then r < 1/2 and the convergence is faster than adder.

B4) Case 2: τ ≤ τX < 2τ

In this scenario, the X-event leading to cell division occurs in the previous cell generation because τX > τ. As such, the
division size is expressed as:

S
(n)
d =

1
2

eλτX

︸︷︷︸
α

S
(n−1)
X . (67)

Similarly as before, we express the cell size at the X-event as:

S
(n)
X = S

(n)
X −

1
2

S
(n−1)
d +

1
2

S
(n−1)
d , (68)

= ∆X + S
(n−1)
X −

α

4
S
(n−2)
X . (69)



Therefore, the series S
(n)
d satisfies the second order recurrence relation:

S
(n)
d − S

(n−1)
d +

α

4
S
(n−2)
d =

α

2
∆X. (70)

Equation (70) is solved using standard results on series. The homogeneous solution is obtained by considering the
characteristics equation:

u2 − u +
α

4
= 0, (71)

with imaginary solutions (because α > 1):

u1/2 =
1
2
± i

√
α − 1
2
. (72)

The general solution must be a linear combination of the series [un
1 ] and [un

2 ]. Using the particular solution S
(n)
d = 2∆X to

Equation (70) and the fact that the solution must be real, we finally find the solution:

S
(n)
d = Arn cos (nθ + ϕ) + S

(∞)
d , with

⎧⎪⎪⎪⎨

⎪⎪⎪
⎩

S
(∞)
d = 2∆X,

r =

√
α/2,

tan ϕ =

√
α − 1,

(73)

where A and ϕ are two constants determined by the initial condition (S(0)
d , S

(1)
d ). Equation (73) defines a regime in which the

convergence is slower than for adder since r > 1/2. In addition, the presence of oscillations in the response to perturbations
to cell size suggests that in the presence of stochastic fluctuations the distribution of cell size would be quite large.

B5) Cell size convergence for general perturbations

As emphasized earlier, the analytical expressions Equations (66) and (73) are only valid for small perturbations. For larger
perturbations, more than one X-event may occur per cell cycle. The actual generation time of individual cells during convergence
may then vary significantly, resulting in the cell size convergence to be a combination of the scenari discussed previously.
We investigated numerically cell size relaxation from a perturbed initial condition (Deterministic cell size relaxation in the
phase-shifted model). We defined τ = ln 2/λ = 1 as unit of time and ∆d = 1 as unit of size. We took the initial condition
S
(0)
X = 4. We observed cell size convergence in agreement with the analytical cases discussed above. In particular, for τX = 0

the cell size convergence is like adder. For τX = 0.5τ we find that the cell size converges faster than adder. Gradually as τX

increases, the cell size convergence becomes slower than adder, and even oscillations appear.

B6) Comments

In summary, both analytical expressions and numerical simulations indicate that the cell size convergence in the phase-shifted
model can deviate significantly from adder. This stems from the very definition of the phase-shifted model. In particular, for
the values tested by Campos and colleagues [S12], τX = 1.3τ and τX = 2.2τ, cell size convergence not only is slower than
adder but also exhibits an oscillatory response to perturbations. As such, it is expected that the distribution of cell size in a
stochastic implementation of this model will be very broad, which is one of the reasons invoked to reject the phase-shifted
model and consequently refute the idea that division is controlled by chromosome replication initiation. However, this feels
somehow excessive since there are other models implementing a control of division by initiation that would not lead to such
an aberrant convergence property for cell size.

C. Alternative adder model for cell cycle based on replication initiation control

In this section, we present an alternative model for the cell cycle controlled by initiation events, yet satisfying the adder
convergence for cell size and the absence of correlations for the added size. Namely, we consider that chromosome replication
initiates after a fixed volume per origin of replication has been added since the last replication initiation. Since at division, the
number of origins of replication is divided by two, Equations (65) and (69) become:

s
(n)
i = s

(n−1)
i + δi, (74)

where si = Si/Nori is the volume per origin of replication at initiation and δi = ∆d/Nori. This ensures that:

s
(n)
i = (s(0)i − δi)

1
2n
+ δi, (75)
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Deterministic cell size relaxation in the phase-shifted model [S12]. (A) Simulated lineages with different values of the phase shift τX.
(B) Overlay of cell size convergence for the simulated lineages.

which is the adder convergence.
We now consider that each initiation event leads to a cell division event after a time equal to τcyc has elapsed, hence

assuming that division is regulated by chromosome replication initiation. In general, τcyc may be larger than the generation
time τ = λ/ln 2. Therefore, the size at cell division is given by:

S
(n)
d = 2ps

(n−p)
i eλτcyc, (76)

where p is the integer part of τcyc/τ. Note that the number of origin of replication is Nori = 2p . For simplicity, here we assume
that p is fixed, meaning that the replication initiation event leading to the cell division of the current generation always occurs



in the same relative ancestor (e.g. mother, grand-mother, etc.). The added size between division events is then expressed as:

∆
(n)
d = S

(n)
d − S

(n−1)
d ,

= 2peλτcyc

︸!!!︷︷!!!︸
A

δ
(n)
i .

(77)

We thus obtain that the mother/daughter correlation for the division adder is related to the mother/daughter correlation for
the initiation adder:

⟨∆(n+1)
d ∆

(n)
d ⟩ − ⟨∆d⟩2 = A2

(
⟨δ(n+1)

i δ
(n)
i ⟩ − ⟨δi⟩2

)
. (78)

Provided that the added size per origin of replication in Equation (74) is uncorrelated to the next, we retrieve that the added
size between divisions is uncorrelated from mother to daughter cells.



APPENDICES

Appendix A: Properties of Gaussian bivariate distributions

A1) Conditional probability

Let us consider two stochastic variables X and Y distributed according to a Gaussian bivariate distribution. We shall consider
for simplicity that both X and Y are centered:

⟨X⟩ = 0, ⟨Y⟩ = 0. (79)

The distribution of a random Gaussian vector R = (X,Y ) is characterized by the covariance matrix:

K0 =

(
σxx σxy

σxy σyy

)

. (80)

The variance of X (resp. Y ) is σxx (resp. σyy) and the covariance between variables X and Y is given by cov(X,Y ) = σxy .
The Pearson correlation coefficient between variables X and Y is expressed as:

ρ =
σxy

√
σxx
√
σyy
. (81)

The probability distribution of the random vector R = (X,Y ) is given by:

p(r) =
1

(2π)
√

det(K0)
exp

(

−
1
2

rT · K−1
0 · r

)

. (82)

Denoting p(x, y) = p(r), and using the definition for conditional probabilities: p(x |y) = p(x, y)/p(y), we obtain:

p(x |y) =
1
Z

exp

(

−
1
2

1

σxxσyy − σ2
xy

[
σyy x2

+ σxx y
2 − 2σxy xy

]
)

, (83)

where Z is a normalization constant depending on y. This normalization is obtained by ensuring that
∫

dx p(x |y) = 1. We
finally obtain:

p(x |y) =
1

√
2πσ(x |y)2

exp

(

−
1
2
(x − E(x |y)2)
σ(x |y)2

)

, (84)

which is a Gaussian distribution with mean:

E(x |y) = ρ
√
σxx

σyy
y, (85)

and variance:
σ(x |y)2 = σxx(1 − ρ2). (86)

When ρ = 0, we find that this Gaussian distribution does not depends on y. When ρ = ±1, the variance σ(x |y)2 → 0, i.e. x

becomes a deterministic variable, with value y (or −y) if σxx = σyy .

A2) Correlation of the inverse

We first consider the random vector f (R) = ( f (X), f (Y )), where f is a quadratic function:

f (x) =
1
2

a2x2
+ a1x + a0. (87)

We now ask what is the Pearson correlation between variables f (X) and f (Y ) given the correlation between variables X and
Y . Introducing the vector Λ = (λ, η), one can for instance consider the characteristic function:

ϕ(Λ) =
〈
eλ f (X)+η f (Y)

〉
,

=

∫
dx dy p(x, y) exp

(
Λ
T f (R)

)
,

= e(λ+η)a0

∫
d2R

1

2π
√

det (K0)
exp

(

−
1
2

RT K−1
Λ

R + a1Λ
T R

)

,

= e(λ+η)a0

√
det (KΛ)
det (K0)

exp

(
1
2

a2
1Λ

T KΛΛ

)

,

(88)



where we introduced the matrix:

KΛ =
1 − ρ2

g(λ,σxx)g(η,σyy) − ρ2

(
σxxg(λ,σxx) σxy

σxy σxyg(η,σyy)

)

, (89)

and the function g(λ,σ2) = 1−λσ2a2(1− ρ2). We then obtain the desired correlations by taking the derivative of the logarithm
of the characteristic function:

⟨δ f (X)2⟩ =
∂2 ln ϕ

∂λ2

<
<
<
<
λ=0,η=0

,

= a2
1σxx +

1
2
σ2
xxa2

2 .

⟨δ f (Y )2⟩ =
∂2 ln ϕ

∂η2

<
<
<
<
λ=0,η=0

,

= a2
1σyy +

1
2
σ2
yya2

2 .

⟨δ f (X)δ f (Y )⟩ =
∂2 ln ϕ

∂λ2

<
<
<
<
λ=0,η=0

,

= a2
1σxy +

1
2
σxxσyya2

2ρ
2.

(90)

We therefore obtain for the Pearson correlation coefficient:

ρ( f (X), f (Y )) =
⟨δ f (X)δ f (Y )⟩

√
⟨δ f (X)2⟩

√
⟨δ f (Y )2⟩

, (91)

=

ρ

(

1 + 1
2
√
σxxσyy

(
a2
a1

)2
ρ

)

√

1 + 1
2σxx

(
a2
a1

)2
√

1 + 1
2σyy

(
a2
a1

)2
. (92)

Equation (92) is an exact result. We see that when
√
σxx ≪ |a1/a2 | and

√
σyy ≪ |a1/a2 |, the correlation between the

transformed variables is equal to the correlation between the two variables: ρ( f (X), f (Y )) ≈ ρ(X,Y ).
Let us consider now the case where the function of interest is the inverse function:

f (x) =
1

1 + x
. (93)

The result in Equation (92) does not strictly hold because Equation (93) is not a quadratic form. However, if the fluctuations
in X are not too large, one might expect that the fluctuations of f (X) around 1 are not too large either. In this case, one might
approximate f (x) to a Taylor expansion. We thus obtain a quadratic form as in Equation (87), with a2 = 2, a1 = −1 and a0 = 1.
Considering that the two variables have the same variance σxx = σyy = σ

2, we show in Pearson correlation between f (X)
and f (Y ) that when σ ≪ |a1/a2 | = 0.5, the Pearson correlation of the transformed variables is approximately equal to the
Pearson correlation between the two variables: ρ( f (X), f (Y )) ≈ ρ(X,Y ) as long as σ is not too large.

Appendix B: Time-dependent growth rate in balanced growth

In this section, we derive the equation describing the time evolution of the instantaneous growth rate in single cells (i.e.

the elongation rate for rod-shaped bacteria). We then generalize the equation describing concentration dynamics, namely
Equation (39).

Let us denote M the dry mass of an individual cell. We assume that the total mass increase is directly proportional to the
number of ribosomes in the cytoplasm. Thus we have:

dM

dt
(t) = σMR(t), (94)

where σ corresponds to the amount of new biomass produced per ribosome and MR is the mass of ribosomes in the cell. Note
that we assume that σ is constant, that is to say that the translation load of ribosomes is invariant through time. Furthermore,
in balanced growth, a fixed fraction of the mass increase is allocated to ribosome synthesis:

dMR

dt
(t) = φ∗R

dM

dt
(t), (95)
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where φ∗R is the fixed fraction of the mass flux allocated to ribosome synthesis. Introducing the instantaneous mass fraction of
ribosomes φR(t) = MR(t)/M(t), we obtain from Equation (94) the equation for exponential growth:

dM

dt
(t) = λ(t)M(t), with λ(t) = σφR(t). (96)

Using Equations (94) and (95), we obtain the equation describing the time-evolution of the instantaneous growth rate:

dλ
dt
= λ(t) (λ∗ − λ(t)) , (97)

where λ∗ = σφ∗R is the steady-state growth rate.
Let us now consider a generic protein with instantaneous mass MP in the cell. Again we assume that this protein is

produced under balanced growth:
dMP

dt
(t) = φ∗P

dM

dt
(t), (98)

where φ∗P is the fixed fraction of the mass flux allocated to the biosynthesis of protein P. Using Equation (96), we find that the
instantaneous mass fraction φP(t) = MP(t)/M(t) satisfies:

dφP
dt

(t) = λ(t)(φ∗P − φP(t)), (99)

or in terms of concentrations:
dcP

dt
(t) = λ(t)(c∗P − cP(t)). (100)
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