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Abstract

Biological systems are a rich source of new problems in physics, and solving them re-

quires ideas from various fields. In this thesis, we focus on the specific biological phe-

nomenon of DNA replication, which is tightly regulated by spatio-temporal “programs”

during the cell cycle.

Inspired by a formal analogy between DNA replication and one-dimensional nucleation-

and-growth processes, we extend the 1D Kolmogorov-Johnson-Mehl-Avrami (KJMA)

model to arbitrary nucleation ratesI(t). We then use the KJMA model to extract kinetic

parameters from data taken from molecular combing experiments. The analysis devel-

oped here can help biologists to understand and compare temporal programs of DNA

replication of different organisms from a unified scheme.

After developing the kinetic model, we show how underlying physical properties

of chromatin, in particular its intrinsic stiffness, can explain various long-standing ex-

perimental observations. These include synchrony and correlations in the initiation of

replication origins, as well as determination of the origin spacings in the absence of

sequence requirements in early embryos.
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EPILOGUE:

Knowing the influences on shaping my humble being by all these people, how could
I not think of words of my hero François Jacob?

And then, how not to see that all these selves of my past life have played the

greatest role, and the greater the earlier they came, in the development of

the secret image that from the deepest part of me guides my tastes, desires,

decision. Starting in the younger years, imagination seizes on the people

and things it encounters. It grinds them down, transforms them, abstracts a

feature or a sign with which to shape our ideal representation of the world.

A schema that becomes our system of reference, our code to decipher on-

coming reality. Thus, I carry within a kind of inner statue, a statue sculpted

since childhood, that gives my life a continuity and is the most intimate

part of me, the hardest kernel of my character. I have been shaping this

statue all my life. I have been constantly retouching, polishing, refining it.

Here, the chisel and the gouge are made of encounters and interactions; of

discordant rhythms; of stray pages from one chapter that slip into another

in the almanac of the emotions; terrors induced by what is all sweetness;

a need for infinity erupting in bursts of music; a delight surging up at the

sight of a stern gaze; an exaltation born from an association of words; all

the sensations and constraints, marks left by some people and by others,

by the reality of life and by the dream. Thus, I harbor not just one ideal

person with whom I continually compare myself. I carry a whole train of

moral figures, with utterly contradictory qualities, who in my imagination

are always ready to act as my fellow players in situations and dialogues

imprinted in my head since childhood or adolescence. For every role in this

repertory of the possible, for all the activities that surround me and involve

me directly, I thus hold actors ready to respond to cues in comedies and

tragedies inscribed in me long ago. Not a gesture, not a word, but has been

imposed by the statue within.1

1François Jacob,The Statue Within, Basic Books, New York, 1988.
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Chapter 1

Introduction

. . . then biology was bubbling with activity, changing its ways of thinking,
discovering in microorganisms a new and simple material, and drawing
closer to physics and chemistry. A rare moment. . . .

François Jacob,Nobel Lecture, December 11, 1965

1.1 Physics and biology united1: a brief overview

Can physics deliver another biological revolution? This provocative question was the
title of the editorial in the January 14, 1999, issue of the journalNature[1]. When we
read the history of science, we learn that many major advances happened only when the
field was ready – a state usually preceded by technological developments and followed
by a “paradigm shift" [2]. In that respect, one may consider the empirical data that is
being obtained at an ever-increasing rate in recent years as a prelude to another revolu-
tion in biology. But why should people who are trained in physical sciences be excited
by what is happening in biology?

In fact, there have always been physicists who have crossed the boundaries: In the
early 20th century, Max Delbrück proposed a model for the molecular origin of muta-
tions [3], which was popularized in the classic bookWhat is Life?by another distin-
guished physicist, Erwin Schrödinger [4]. (Although many of the detailed ideas in the
book proved to be wrong, it inspired a generation of biologists.) As another example,
half of the credit for the discovery of the famous double-helix structure ofdeoxyribonu-
cleic acid(DNA) is shared by the physicist Francis Crick [5]. And, Walter Gilbert, a
particle physicist by training, received a Nobel prize for contributions to DNA sequenc-
ing [6].

On the other hand, some physicists have seen biological systems as a rich source
of new problems in physics. The energy landscape theory of biomolecules and protein
folding [7], membrane mechanics [8], neural networks [9], and electrostatics problems

1The original title wasPhysics and biology united (. . .!). For those who are curious about “. . .,” it was
inspired by the Chilean song¡El Pueblo Unido Jamás Será Vencido!

1



2 CHAPTER 1. INTRODUCTION

inspired by DNA [10] are just a small sample from a long list of examples in the last
few decades.

The recent interdisciplinary work by scientists in physics, biology, computer sci-
ence, and other areas has a different nature from that of the “old schools” mentioned
above. In particular, systems biology, or “modular biology”2 as it is sometimes called,
is a field where one needs not only to manage data but also new ways of thinking about
the data. Here, data and experiments are the keywords that distinguish the current re-
search activities and their outcomes from the pioneering but less-successful attempts
several decades ago.

Indeed, starting in the 1960s, Michael Savageau and co-workers built a powerful
framework (which became known as Biochemical Systems Theory, or BST) for a gen-
eral analysis of interacting biochemical processes [12–14]. However, it was only much
later, at the end of the 1990s, that scientists were finally able to tackle important ques-
tions in systems biology, using the powerful methods of genetic engineering and other
techniques that had begun to produce large amounts of data [15–19]. Without such data,
the theoretical work of Savageau and others was “premature” and destined to have little
influence.3

To make an analogy, the current situation in biology resembles the exciting events
that occurred about four centuries ago in physics, when, by collecting significantly bet-
ter data, Brahe led Kepler to conclude that planetary orbits were ellipses and not circles
(with or without epicycles) [21]. Kepler’s elliptical model said nothing about the phys-
ical origins of ellipses, but his kinematic modeling was an essential starting point for
Newton’s work on dynamics 50 years later [22].

Although our goals here are much more modest, the theme of this thesis – DNA
replication – certainly has similar ingredients: The recent development of “molecular
combing” [23] and other techniques [24, 25] now makes it possible to extract large
amounts of data from the replication process and, thus, to have detailed and reliable
statistics. In other words, in light of systems biology, the field of DNA replication is
becoming mature and ready for quantitative modeling – a modeling that makes exper-
imentally testable predictions, thus helping researchers to understand their data at a
deeper level.

In this thesis, we shall show that recent experiments on DNA replication inXenopus
early embryos can be modeled via a kinetic description that plays the same role as
Kepler’s description of elliptical orbits. This model then suggests a particular biological
mechanism of relevance to DNA replication, where physical properties of chromatin
loops naturally explain several seemingly unrelated kinetic parameters. Perhaps more
importantly, we are now able to predict how changes in certain physical parameters
(in this case, the intrinsic stiffness or persistence length of chromatin) will affect the

2“Cell biology is in transition from a science that was preoccupied with assigning functions to indi-
vidual protein or genes, to one that is now trying to cope with the complex sets of molecules that interact
to form functional modules.” [11]

3There is a well-documented literature about “premature” scientific ideas that were neglected because
it was not clear how to connect the new ideas to empirical data. See, for example, Ref. [20].
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Figure 1.1: Double-helix structure of DNA
(B-form). Rendered using VMD (Visual
Molecular Dynamics) [26].

kinetics of DNA replication.

1.2 Getting started: a brief history of DNA replication

At the end of their historic 1953 paper on the double-helix structure of DNA (Fig. 1.1),
Watson and Crick noted, “It has not escaped our notice that the specific pairing we
have postulated immediately suggests a possible copying mechanism for the genetic
material.” [5]

A month later, in their second paper, Watson and Crick published their hypothesis
for the replication of DNA: “semiconservative replication” [27]. Their basic idea was
that, if the order of the bases on one of the pairs of chains is given, then the exact order
of the bases on the other one is determined by a specific pairing of complementary bases
[adenosine (A) with thymine (T), cystine (C) with guanine (G)]. One can then think of
the double-stranded DNA molecule as a pair of templates for replication, each of which
is complementary to the other. In other words, each single strand acts as a template for
the formation of a complementary DNA strand, so that each daughter DNA molecule
has the same sequence as the original one. Semiconservative replication was confirmed
in 1958 by an elegant experiment by Meselson and Stahl [28].

How does a cell actually replicate DNA? If Watson and Crick were right, there
should be an enzyme that makes DNA copies from a DNA template. In 1956, Arthur Ko-
rnberg and colleagues demonstrated the existence of such an enzyme: DNA polymerase
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Figure 1.2: Schematic model of replication fork. (a) Various enzymes and proteins that
function at or near a DNA replication fork (see text for details). The fork is moving
upward. (b) Okazaki fragment.

I (pol I) of E. coli bacteria, a model prokaryote [29]. Indeed, the current paradigm
of DNA replication traces back to Kornberg’s pioneering discovery and his method of
enzymology (see below, as well as Ref. [30]).

Schematically, to be able to replicate, a cell has to unfold and unwind its DNA. (As
we shall explain shortly, DNA is packed into a compact structure called chromatin.) It
also has to separate the two strands from each other. The cell has a complex machinery
to perform these tasks [Fig. 1.2(a)]. When it is time to replicate, special initiator proteins
attach to the DNA at regions called replication origins. The initiator proteins pry the two
strands apart, and a small gap is created at the replication origin. Once the strands are
separated, another group of proteins that carries out the DNA replication attaches and
goes to work.

This group of proteins includes helicase, which serves as an “unzipper” by breaking
the bonds between the two DNA strands. This unzipping takes place in both directions
from the replication origins, creating a replication bubble (or “eye”).4 The replication is
therefore said to be bidirectional. Once the two strands are separated, a small piece of
RNA, called an RNA primer, is attached to the DNA by an enzyme called DNA primase.
These primers are the beginnings of all new DNA chains, since DNA polymerases can-
not start from scratch. It is a self-correcting enzyme and copies the DNA template with
remarkable fidelity.5

4The terms “replication bubble” or “eye” come from the appearance of DNA in early electron-
microscopy work. (See Fig. 1.5, below.)

5As an example of this fidelity, consider a naive estimate for the base-pairing error rate that uses
the free-energy difference between correct and incorrect base pairs. Since incorrect base pairs have an
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Figure 1.3: Eukaryotic cell cycle. (a) The two critical events of the cell cycle are S
and M, which are DNA replication (synthesis) and mitosis (nuclear and cell division),
respectively. There are also gap phases between the two. Normally, replication origins
are replications are determined (“licensed") in G1 before the cell enters S phase. G1, S,
and G2 are collectively referred to as “interphase.” (b) An embryonic cell cycle lacks
the Gap phases.

The DNA polymerase can read in only one direction (3′ to 5′). This gives rise to
some trouble, since the two strands of the DNA are antiparallel. On the upper strand,
which runs from 3′ to 5′, nucleotide polymerisation can take place continuously without
any problems. This strand is called the “leading” strand. But how does the polymerase
copy the other strand then when it runs in the opposite direction, from 5′ to 3′? On this
“lagging” strand the polymerase produces short DNA fragments, called Okazaki frag-
ments, by using a backstitching technique [Fig. 1.2(b)]. These lagging strand fragments
are primed by short RNA primers and are subsequently erased by pol I and replaced
by DNA with help of DNA ligase (Fig. 1.2). Meanwhile, as the fork progresses, DNA
becomes more and more twisted because of its double-helix structure, and it is topoiso-
merase that “untwists” DNA.

As one can imagine, DNA replication is crucial to life and, thus, highly regulated,
both temporally and spatially. But, when and where does initiation actually occur? How
many replication origins are there along the genome?

The answers to many of these questions are well-understood for prokaryotes, which
usually have circular DNA and a single unique origin [30]. For example,E. coli has
a specific site called oriC (245 bp long) where a complex of DnaA proteins bind and
starts replication. The replication bubble then grows bidirectionally (at a rate≈ 1000
bp/sec) and terminates at another site called terC. The whole 4.7 million basepairs (bp)

enthalpy (bonding + stacking) several∼ kBT greater than the correct base pairs [31], one can use the
Boltzmann distribution to estimate an error rate ofexp(∆E/kBT ) ∼ 10−2− 10−4. In fact, the observed
error rate is10−10 and is the result of an elaborate active “proofreading” and correction scheme [32].
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may facilitate gene activation, by promoting specific structural 
interactions between distal sequences, or repression, by occluding
binding sites for transcriptional activators. 

We suggest that the function of archaeal histones reflects their
ancestral function, and therefore that chromatin evolved originally
as an important mechanism for regulating gene expression. Its use in

packaging DNA was an ancillary benefit that was recruited for the
more complex nucleosome structure that subsequently evolved in
the ancestors of modern eukaryotes, which had expanded genome
sizes. Although their compactness might seem to suggest inertness,
chromatin structures are in fact a centre for a range of biochemical
activities that are vital to the control of gene expression, as well as
DNA replication and repair.

Packaging DNA into chromatin
The fundamental subunit of chromatin is the nucleosome, which
consists of approximately 165 base pairs (bp) of DNA wrapped in two
superhelical turns around an octamer of core histones (two each of
histones H2A, H2B, H3 and H4). This results in a five- to tenfold
compaction of DNA6. The DNA wound around the surface of the 
histone octamer (Fig. 1) is partially accessible to regulatory proteins,
but could become more available if the nucleosome could be moved
out of the way, or if the DNA partly unwound from the octamer. The
histone ‘tails’ (the amino-terminal ends of the histone protein
chains) are also accessible, and enzymes can chemically modify these
tails to promote nucleosome movement and unwinding, with 
profound local effects on the chromatin complex.

Each nucleosome is connected to its neighbours by a short 
segment of linker DNA (~10–80 bp in length) and this polynucleo-
some string is folded into a compact fibre with a diameter of ~30 nm,
producing a net compaction of roughly 50-fold. The 30-nm fibre is
stabilized by the binding of a fifth histone, H1, to each nucleosome
and to its adjacent linker. There is still considerable debate about the
finer points of nucleosome packing within the chromatin fibre, and
even less is known about the way in which these fibres are further
packed within the nucleus to form the highest-order structures.

Chromatin regulates gene expression 
Regulatory signals entering the nucleus encounter chromatin, not
DNA, and the rate-limiting biochemical response that leads to 
activation of gene expression in most cases involves alterations in
chromatin structure. How are such alterations achieved?

The most compact form of chromatin is inaccessible and 
therefore provides a poor template for biochemical reactions such as
transcription, in which the DNA duplex must serve as a template for
RNA polymerase. Nucleosomes associated with active genes were
shown to be more accessible to enzymes that attack DNA than those
associated with inactive genes7, which is consistent with the idea that
activation of gene expression should involve selective disruption of
the folded structure.

Clues as to how chromatin is unpacked came from the discovery that
components of chromatin are subject to a wide range of modifications
that are correlated with gene activity. Such modifications probably
occur at every level of organization, but most attention has focused on
the nucleosome itself. There are three general ways in which chromatin
structure can be altered. First, nucleosome remodelling can be induced
by complexes designed specifically for the task8; this typically requires
that energy be expended by hydrolysis of ATP. Second, covalent modifi-
cation of histones can occur within the nucleosome9. Third, histone
variants may replace one or more of the core histones10–12.

Some modifications affect nucleosome structure or lability
directly, whereas others introduce chemical groups that are recog-
nized by additional regulatory or structural proteins. Still others may
be involved in disruption of higher-order structure. In some cases,
the packaging of particular genes in chromatin is required for their
expression13. Thus, chromatin can be involved in both activation and
repression of gene expression.

Chromatin remodelling
Transcription factors regulate expression by binding to specific DNA
control sequences in the neighbourhood of a gene. Although some
DNA sequences are accessible either as an outward-facing segment
on the nucleosome surface, or in linkers between nucleosomes, most
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Figure 1 Packaging DNA. a, The organization of DNA within the chromatin structure.
The lowest level of organization is the nucleosome, in which two superhelical turns of
DNA (a total of 165 base pairs) are wound around the outside of a histone octamer.
Nucleosomes are connected to one another by short stretches of linker DNA. At the
next level of organization the string of nucleosomes is folded into a fibre about 30 nm
in diameter, and these fibres are then further folded into higher-order structures. At
levels of structure beyond the nucleosome the details of folding are still uncertain.
(Redrawn from ref. 41, with permission). b, The structure of the nucleosome core
particle was uncovered by X-ray diffraction, to a resolution of 2.8Å (ref. 42). It shows
the DNA double helix wound around the central histone octamer. Hydrogen bonds
and electrostatic interactions with the histones hold the DNA in place.
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Figure 1.4: Higher-order
structure of chromatin.
Courtesy of Gary Felsen-
feld and Mark Groudine.
Reprinted by permission
from Nature [vol. 421, pp.
448-453] copyright (2003)
Macmillan Publishers Ltd.

are completely duplicated in less than 40 minutes. What about eukaryotes? The answer
is similar but much more complex. First, eukaryotic cells go through a series of stages,
called a cell cycle [Fig. 1.3(a)], and DNA is only replicated during one of those stages
called S phase (not surprisingly, “S” stands for synthesis) [Fig. 1.3(a)]. Second, eu-
karyotic genomes are usually much longer than prokaryotic ones. The human genome,
for example, consists of 23 (pairs of) chromosomes with a total length of3 × 109 bp.
Here, “chromosomes” refers to the threadlike “packages” of genes in the cell nucleus
(Fig. 1.4). In contrast to prokaryotic systems, the replication fork velocities are of order
10 bp/sec. Because the S phase can be as short as 20 minutes, replication must take
place simultaneously at many different sites along the DNA. Indeed, with fork veloci-
ties 100 times slower and with 1000 times the DNA to replicate, the eukaryotic genome
can have as many as105 origins of replication (Fig. 1.5), often with different growth
rates.

Because of these complexities, there are still many basic questions waiting to be
answered. For example, what regulates the spatio-temporal distributions of replication
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Figure 1.5: Electron micrograph showing multiple replication bubbles ofDrosophila
melanogasterDNA. From Fig. 2 in Ref. [33] by Kriegstein and Hogness, with permis-
sion. Copyrightc© Proceedings of the National Academy of Sciences USA.

bubbles during the course of S phase? What ensures that DNA is replicated once and
only once during S phase? Are there specific sequences of DNA that are responsible
for initiation in eukaryotes? Does a higher-order structure of chromatin and/or other
structures inside the cell nucleus play a role in DNA replication?

As a more specific example, we briefly summarize the process of DNA replication
in one of the best-studied eukaryotic systems, the famous South African clawed toad
Xenopus laevis. (For detailed reviews, see Refs. [34, 35].)

The fertilizedXenopusegg undergoes 12 synchronous rounds of cell division in
about 8 hours. During this period, the large egg (≈ 1 mm) subdivides into 4096 (= 212)
smaller cells without growing in size. After the first 12 cycles of cleavage, the cell-
division rate slows down abruptly, and transcription (protein synthesis) of the embryo’s
genome begins. This change is known as the mid-blastula transition (MBT). Since its
large eggs are easy to manipulate and see and since its cell cycle is rapid and simple,6

the early-embryoXenopusis a good model for studying cell-cycle regulation.
An interesting (and important) fact aboutXenopusearly embryos is that, unlike

E. coli or another simple eukaryote, budding yeast, there is no specific sequence re-
quirement for initiating DNA replication [36]. Moreover, these early embryos lack an
efficient S/M checkpoint that makes cells delay entry into mitosis in the presence of
unreplicated DNA [37]. Nevertheless, theXenopusdiploid genome ( > 6 billion base-
pairs!) is completely replicated within the 10-20 minutes of S phase. Apparently, there

6Each cycle consists of only two stages: Mitosis (cell-division) and S phase; see Fig. 1.3(b). Also,
note that during S phase in early embryos, no proteins are synthesized [32].
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Chromatin

(a)  Replication foci (b)  Chromatin loops

Figure 1.6: Replication foci and chromatin loops. (a) An image of early S-phase-labeled
(BrdU) replication sites of HeLa cell nucleus (taken with an Olympus epifluorescent
microscope). The diameter of the nucleus in this image is approximately10µm. 20
µ molar BrdU was incorporated for 7 minutes for pulse labeling. Courtesy of Ronald
Berezney and Kishore Malyavantham (State University of New York at Buffalo). (b)
Chromatin loops at focus (“replication factory”).

is a strict control mechanism, independent of sequence, that regulates the density of
origins and time of activation to prevent the “random-completion problem,” where any
large fluctuations in the spacing between origins would lead to (fatal) fluctuations in
the duration of S phase. One of the goals of this thesis is to study the spatio-temporal
program of DNA replication in this system.

Finally, many textbook models (e.g., Fig. 1.2) for replication often display poly-
merases that track like locomotives along their DNA templates. However, this idea
stems not from any solid experimental evidence but from a perception of relative size
and from somewhat misleading early electron micrographs (such as Fig. 1.5). Although
one’s intuition is that the smallest object should move, recent evidence supports an al-
ternate model in which DNA polymerases are immobilized by attachment to a larger
structure, where they reel in theirloopedtemplates and extrude newly made nucleic
acids [38]. These polymerases do not act independently; they are concentrated in dis-
crete “factories,” where they work together on many different templates. Indeed, al-
though the resolution is limited, pictures of stable replication foci (where nascent DNA
is concentrated), such as shown in Fig. 1.6(a), strongly support the factory model. In
the latter part of this thesis, we will explore how the distribution of replication bubbles
(Fig. 1.5) can be regulated by chromatin loops at replication factories.
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1.3 About this thesis

The main goal of this thesis is to develop and present various tools in theoretical physics
that can be used to identity the spatio-temporal program of DNA replication from data.
We then apply our methods to recent experiments on a model system,Xenopusegg
extracts, which support all the nuclear events of the early embryonic cell-division cycle.

Our starting point is the electron micrograph of multiple eyes in Fig. 1.5, which
we interpret as a “snapshot” of a one-dimensional system undergoing nucleation-and-
growth processes with an unknown nucleation rateI(t). This mapping of the descrip-
tion of DNA replication onto the description of (one-dimensional) crystal-growth kinet-
ics gives us access to a well-developed set of theories.7 Thus, in Ch. 2, we introduce
the classic Kolmogorov-Johnson-Mehl-Avrami model of nucleation and growth [39–43]
and extend it to the case of an arbitrary nucleation functionI(t). In Ch. 3, we study the
reverse, ı.e., we discuss how to extractI(t) from a set of many snapshots analogous
to Fig. 1.5. In Ch. 4, we apply the kinetic model to data recently obtained by Herrick
et al. [44]. We then discuss the extractedI(t) as a temporal program of replication in
Xenopusearly embryos.

In the next two chapters, we shift our focus to understanding the biological mech-
anisms that underlie the replication program. This leads us to consider the replication-
factory model. (Fig. 1.6) Since one of the possible implications of the factory model is
that chromatin fibers should attach to immobilized factories via looping, the loop sizes
should correspond to the origin spacings. As we shall show later, the loop-formation
probability depends on the intrinsic stiffness (or “persistence length”) of polymers, and
there is a specific length where loops can form most efficiently. In Ch. 5, we incor-
porate these results into the kinetic model to explain the spatial distribution of repli-
cation bubbles in the experimental data. Two crucial assumptions here are that, first,
the loop-formation time is much shorter than the typical time-scale of DNA replication
such as the duration of S phase. Second, we assume that the sizes of loops formed
represent those with largest statistical weight, as calculated via an equilibrium distri-
bution of loop-sizes. In Ch. 6, we tackle a simplified version of the problem, namely,
loop-formation dynamics of a single chain with two “sticky” ends. We obtain a simple
analytical expression to estimate the closing timeτc, and, indeed, a typicalτc for chro-
matin is several orders of magnitude smaller than the duration of S phase. In addition,
in certain (biologically relevant) limits, the loop-formation rate of polymers is set by the
equilibrium distributions of loop sizes, thus justifying the results in Ch. 5.

The results in Ch. 4 and 5 can be considered to provide a mechanism that ensures
complete, faithful, and timely reproduction of the genome without any sequence depen-
dence of replication origins inXenopusearly embryos.

Parts of this thesis are based on previously published our work: Ch. 4 on Ref. [45],
Ch. 5 on Ref. [46], and Ch. 6 on Ref. [47].

7We emphasize that one should not interpret Fig. 1.5 as the actual geometry of DNA in a cell nucleus
during replication. Even so, the one-dimensional topology of alternating replicated and non-replicated
domains is still correct, and our model will be based on this topology.
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Chapter 2

The Generalized
Kolmogorov-Johnson-Mehl-Avrami
Model

2.1 Introduction

Consider a tray of water that at timet = 0 is put into a freezer. A short while later,
the water is all frozen. One may thus ask, “What fractionf(t) of water is frozen at
time t ≥ 0?” In the 1930s, several scientists independently derived a stochastic model
that could predict the form off(t), which experimentally is a sigmoidal curve. The
“Kolmogorov-Johnson-Mehl-Avrami” (KJMA) model [39–43] has since been widely
used by metallurgists and other materials scientists to analyze phase transition kinet-
ics [48]. In addition, the model has been applied to a wide range of other problems,
from crystallization kinetics of lipids [49], polymers [50], the analysis of depositions in
surface science [51], to ecological systems [52], and even to cosmology [53]. For fur-
ther examples, applications, and the history of the theory, see the reviews by Evans [54],
Fanfoni and Tomellini [51], and Ramoset al. [55].

In the KJMA model, freezing kinetics result from three simultaneous processes:
1) nucleation of solid domains (“islands”); 2) growth of existing islands; and 3) coa-
lescence, which occurs when two expanding islands merge. In the simplest form of
KJMA, islands nucleate anywhere in the liquid areas (“holes”), with equal probability
for all spatial locations (“homogeneous nucleation”). Once an island has been nucle-
ated, it grows out as a sphere at constant velocityv. (The assumption of constantv is
usually a good one as long as temperature is held constant, but real shapes are far from
spherical. In water, for example, the islands are snowflakes; in general, the shape is
a mixture of dendritic and faceted forms. The effect of island shape – not relevant to
the one-dimensional version of KJMA studied here – is discussed extensively in [48].)
When two islands impinge, growth ceases at the point of contact, while continuing else-
where. KJMA used elementary methods, reviewed below, to calculate quantities such
as the solid fractionf(t). Later researchers have revisited and refined KJMA’s methods

11
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Figure 2.1: Mapping DNA replication onto the one-dimensional KJMA model.

to take into account various effects, such as finite system size and inhomogeneities in
growth and nucleation rates [56–58].

Although most of the applications of the KJMA model have been to the study of
phase transformations in three-dimensional systems, similar ideas have been applied to
a wide range of one-dimensional problems, such as Rényi’s car-parking problem [59]
and the coarsening of long parallel droplets [60]. In this thesis, we shall apply the
KJMA model to DNA replication in higher organisms. We start by observing that the
duplication of eukaryotic genomes shares a number of common features [61] that can
be mapped onto the basic assumptions of the KJMA model [45]:

1. DNA replication starts at a large number of sites known as “origins of replication.”
The DNA domain replicated from each origin is referred to, informally, as an
“eye” or a “replication bubble” because of its appearance in electron microscopy.
(Fig. 1.5.)

2. The position of each potential origin that is “competent” to initiate DNA replica-
tion is determined before the beginning of the synthesis part of the cell cycle (“S
phase”), when several proteins including the origin recognition complex (ORC)
bind to DNA, forming a pre-replication complex (pre-RC).

3. During S phase, a particular potential origin may or may not be activated. Each
origin is activated not more than once during the cell-division cycle.

4. DNA synthesis propagates at replication forks bidirectionally, with propagation
speed or fork velocityv, from each activated origin. Experimentally,v is approx-
imately constant throughout S phase.

5. DNA synthesis stops when two newly replicated regions of DNA meet.
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Figure 2.2: Schematic description of the double-labeling experiment. (a) Before repli-
cation starts, one adds “red dye” (biotin-dUTP) into the solution ofXenopusegg extracts
and sperm chromatin. (b) “Eyes” then grow while more replication origins fire. (c) At
chosen time points, one adds “green dye” (dig-dUTP) and waits until the DNA is com-
pletely replicated. (d) One then stretches the replicated DNA molecules in solution onto
a glass surface (“molecular combing”). For more details, see text and Ref. [44].

From Fig. 2.1, it is apparent that processes 3–5 have a formal analogy with nucle-
ation and growth in one dimension (see also Fig. 1.5). We identify (1) nucleation of
islands as activation (initiation) of replication origins; (2) growth of the eyes as growth
of the islands; and (3) coalescence of two expanding eyes as the merging of growing
islands. Of course, while DNA is topologically one dimensional, it is embedded in a
three-dimensional space.

In an ideal world, one could monitor the replication process continuously and com-
pile domain statistics in real time. In the real world, the three billion DNA basepairs (bp)
of a typical higher eukaryote, which replicate in as many as∼105 sites simultaneously,
are packed in a cell nucleus of radius∼1 µm, making a direct, real-time monitoring
impossible [32]. In Ch. 4, we analyze an experiment that used two-color fluorescent
labeling of DNA bases to study replication kinetics indirectly (Fig. 2.2).1 Schemati-
cally, one begins (in a test tube) by labeling the bases used in replicating the DNA with,
say, a red dye. At some time during the replication process (e.g.,t1 in Fig. 2.1), one
floods the test tube with green-labeled bases and allows the replication cycle to go to
completion. One then stretches the DNA onto a glass slide (“molecular combing” [23]),
a process that unfortunately also breaks the DNA strands into finite segments. Under a
microscope, regions that replicated before adding the dye are red, while those labeled
afterwards are predominantly green. Typical two-color epifluorescence images of the
combed DNA are shown in Fig. 2.3. The red-and-green regions correspond to eyes and
holes in Fig. 2.1, forming a kind of snapshot of the replication state of the DNA frag-

1The experimental details are described elsewhere [44], but the approach is similar to DNA fiber
autoradiography developed by Huberman and Riggs, a method that has been in use for the last 30
years [62, 63].
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Figure 2.3: A fluorescence micrograph (bar= 20 µm). Early replicating sequences
labeled with biotin-dUTP are visualized using red fluorescing antibodies (Texas Red).
Later replicating sequences are in addition labeled with dig-dUTP and visualized using
green (FITC) fluorescing antibodies. Courtesy of Aaron Bensimon and John Herrick.

ment at the time the second dye was added. Each time point in Fig. 2.1 would thus
correspond to a separate experiment.

The purpose of the present two chapters, then, is as follows: Here, in Ch. 2, we
discuss the KJMA model and how to generalize it for biological application. In par-
ticular, we consider the problem of arbitrarily varying origin initiation rate (equivalent
to arbitrarily varying nucleation rate in freezing processes). Then, in Ch. 3, we discuss
a number of subtle but generic issues that arise in the application of the KJMA model
to DNA replication. The most important of these is that the method of analysis runs
backward from the usual one. Normally, one starts from a known nucleation rate (de-
termined by temperature, mostly) and tries to deduce properties of the crystallization
kinetics. In the biological experiments, the reverse is required: from measurements of
statistics associated with replication, one wants to deduce the initiation rateI(t). This
problem, along with others relating to inevitable experimental limitations, merits sepa-
rate consideration.

In the mid-1980s, Sekimoto showed that the analysis of the KJMA model could be
pushed much further if growth occurs in only one spatial dimension [64–66]. Sekimoto
used methods from non-equilibrium statistical physics to describe the detailed statistics
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Figure 2.4: Kolmogorov’s method for constant nucleation rateI(t) = I0. (a) Spacetime
diagram. In the small square box, the probability of nucleation isI0 · ∆x · ∆t, where
I0 is the nucleation rate. In order for the pointX to remain uncovered by islands,
there should be no nucleation in the shaded triangle in spacetime. (b) Kinetic curve for
constant nucleation rateI0: f(t) = 1− exp(−I0vt2).

of domain sizes and spacings, as defined in Fig. 2.1. In particular, he studied the time
evolution of domain statistics by solving Fokker-Planck-type equations for island and
hole distributions, assuming that the nucleation rateI(t) is constant. His approach has
since been revisited by others (e.g., [67]).

Below, we review Sekimoto’s approach and extend it to the case of an arbitrary
nucleation rateI(t). As mentioned above, this case is relevant to the kinetics of DNA
replication in eukaryotes. We also present an algorithm to simulate 1D nucleation-and-
growth processes that is much faster than more-standard lattice methods [68].

2.2 Theory

2.2.1 Island fractionf(t)

We begin with the calculation off(t), the fraction of islands at timet in a one-dimensional
system. We write asf(t) = 1−S(t), whereS(t) is the fraction of the system uncovered
by islands (ı.e., the hole fraction). In other words,S(t) is the probability for an arbitrary
pointX at timet to remain uncovered. If we view the evolution via a two-dimensional
spacetime diagram [Fig. 2.4(a)], we can calculateS by noting that

S(t) = lim
∆x,∆t→0

∏
x,t∈4

(1− I0∆x∆t)

= exp

(
−
∫∫

x,t∈4
I0dxdt

)
(2.1)

= exp(−I0vt2),
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where∆ denotes the gray triangle shown in Fig. 2.4(a). Therefore,

f(t) = 1− e−I0vt2 , (2.2)

which has a sigmoidal shape, as mentioned above [see Fig. 2.4(b)].
We note that Kolmogorov’s method can be straightforwardly applied to any spatial

dimensionD for arbitrary time- and space-dependent nucleation ratesI(~x, t). Similar
“time-cone” methods can yieldf(t) in the presence of complications such as finite sys-
tem sizes [56–58]. Unfortunately, this simple method cannot be used to calculate the
distributions defined in Fig. 2.1, except that it can help solve the time-evolution equation
for the hole-size distribution (see below).

2.2.2 Hole-size distributionρh(x, t)

We defineρh(x, t) as the homogeneous density of holes of sizex at time t. For a
spatially inhomogeneous system,ρh(x, X, t) would be the density of holes of sizex
at the genome locationX at time t. As mentioned in the text, we consider spatially
homogeneous systems only. (For a spatially homogeneous nucleation functionI(t),
the densityρh will also be spatially homogeneous.) The hole sizex should not be
confused with the genome spatial coordinateX. The time evolutionρh(x, t) then has
the following structure:

∂ρh(x, t)

∂t
= [drift] + [annihilation] + [creation]. (2.3)

In Fig. 2.5, we illustrate each term that describes the evolution ofρh(x, t): First,
in the absence of new nucleation or coalescence, each hole size decreases by2v · dt
during the time intervaldt. In other words, the size distributionρh(x, t) just drifts at
a rate2v without changing its shape [Fig. 2.5(a)]. Note that the change inρ(x, t) has
the same sign for bothx → x + dx andt → dt. Second, any nucleation on a hole of
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Figure 2.6: Spacetime diagram. The hole-size distributionρh(x, t) is proportional to the
probabilityp0(x, t) for no nucleation event occurs in the shaded parallelogramABCD
(see text).

sizex betweent andt + dt makes the hole disappear [Fig. 2.5(b)]. The annihilation
rate equals the the density of holes of sizex times the number of new nucleations att,
namely, -ρh(x, t) x I(t). Third, holes can be created by nucleation in a larger hole of
sizey > x [Fig. 2.5(c)].

Based on the arguments above, we obtain

∂ρh(x, t)

∂t
= 2v

∂ρh(x, t)

∂x
− I(t) x ρh(x, t) + 2I(t)

∫ ∞

x

ρh(y, t)dy, (2.4)

where the factor 2 in the last (creation) term comes from the left- and right-symmetry
of the nucleation process.

Eq. 2.4 was solved by Sekimoto forI(t)=const., while Ben-Naimet al. derived a
formal solution for arbitraryI(t) [69]. Below, we show that the solution of Ben-Naim
et al. can also be obtained directly by applying Kolmogorov’s argument.

In Fig. 2.6, we see a hole of sizex flanked by two islands. In order for such holes
to exist at timet, there should be no nucleation within the parallelogramABCD in the
spacetime diagram. Similar to the calculation of the hole fractionS(t), we obtain the
“no nucleation” probability in the parallelogram as

p0(x, t) = lim
∆x,∆t→0

∏
x,t∈ABCD

[1− I(t)∆x∆t]

= S(t)e−g(t)·x. (2.5)

whereg(t) =
∫ t

0
I(t′)dt′. The domain densityn(t) and the hole fractionS(t) are related
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by definition as follows:

n(t) =

∫ ∞

0

ρh(x, t)dx (2.6)

S(t) =

∫ ∞

0

x ρh(x, t)dx. (2.7)

Since the hole-size distributionρh(x, t) is proportional top0(x, t), we can writeρh(x, t) =
c(t) · p0(x, t). By integrating this equation and using Eq. 2.6, we obtainc(t) = n(t) ·
g(t)/S(t). Putting this back into Eq. 2.4, we obtain an equation forn(t):

1

n(t)

∂n(t)

∂t
= −2v · g(t) +

I(t)

g(t)
. (2.8)

This is a first-order linear equation and can be solved exactly. Using the boundary
conditionn(0) = 1, we solve Eqs. 2.8 and 2.4 to find

n(t) = g(t) · e−2v
R t
0 g(t′)dt′ ; (2.9)

ρh(x, t) = g(t)2 · e−g(t)x−2v
R t
0 g(t′)dt′ . (2.10)

These are just exponential functions ofx, with decay constants that monotonically de-
crease as a function of time.

2.2.3 Island distribution ρi(x, t)

In analogy to Eq. 2.4 and following [65], a time-evolution equation can be obtained
for the island-size distributionρi(x, t). In this case, the drift term is the same as in
Eq. 2.4, except that the sign changes because islands always grow. On the other hand,
new nucleations contribute toρi(x, t) only with sizeless (x = 0) islands with a rate
−δ(x) ·

∫∞
0

I(t) x ρh(x, t) dx = −I(t) S(t) δ(x) (see Eq. 2.6). Finally, coalescence of
two islands can both annihilate and create islands of sizex: for annihilation, either of
the islands should have a sizex; for creation, the sum of the sizes of the two islands
should bex. The resulting equation can be written as

∂ρi(x, t)

∂t
= −2v

∂ρi(x, t)

∂x
+ I(t) S(t) δ(x)

+a(t)
[ ∫ x

0

ρi(x− y, t)ρi(y, t)dy − 2n(t)ρi(x, t)
]
, (2.11)

wherea(t) is a prefactor that should be determined. We recall that, in one-dimension,
both holes and islands have the same domain densityn(t) =

∫∞
0

ρ(x, t)dx. This means
thata(t) can be determined by applying

∫∞
0

dx to Eqs. 2.4 and 2.12 and comparing the
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two, as follows:

∂n(t)

∂t
= −2vρh(0, t)− I(t) S(t) + 0

∂n(t)

∂t
= 0− I(t) S(t) + a(t) · [n(t)2 − 2 n(t)2].

Thus,a(t) = 2v ρ(0, t)/n(t)2 and we obtain

∂ρi(x, t)

∂t
= −2v

∂ρi(x, t)

∂x
+ I(t) S(t) δ(x)

+2v
ρh(0, t)

n(t)2

[∫ x

0

ρi(x− y, t)ρi(y, t)dy − 2n(t)ρi(x, t)

]
. (2.12)

Unfortunately, we cannot solve Eq. 2.12 using the simple arguments that worked for
ρh(x, t). The main difference is that a hole is created bynucleationonly, while an is-
land of nonzero size is created by growth and/or thecoalescenceof two or more islands.
Thus,ρi(x, t) is given by an infinite sum of probabilities for an island to contain one
seed, two seeds, three seeds, and so on. Nevertheless, we can still obtain the asymp-
totic behavior ofρi(x, t) for arbitraryI(t) by Laplace transforming the above evolution
equation, as in [65].

Applying
∫∞

0
dx e−sx to Eq. 2.12, we find

∂ρ̃i(s, t)

∂t
= −2v [s + 2g(t)] ρ̃i(s, t) + 2v e2v

R t
0 g(t′)dt′ · ρ̃i(s, t)

2 + I(t) S(t), (2.13)

whereρ̃i(s, t) ≡
∫∞

0
e−sxρi(x, t)dx, with initial conditionsρ̃i(s, 0) = 0. We can further

simplify Eq. 2.13 by defining̃Gi(s, t) = exp
[
2v
∫ t

0
g(t′)dt′

]
· ρ̃i(s, t), which then obeys

∂G̃i(s, t)

∂t
= −2v [s + g(t)] G̃i(s, t) + 2v G̃i(s, t)

2 + I(t). (2.14)

If we write G̃i(s, t) as
G̃i(s, t) = s + g(t) + X̃(s, t), (2.15)

we find thatX̃(s, t) obeys the (nonlinear) Bernoulli equation [70]:

∂X̃(s, t)

∂t
= [s + g(t)] X̃(s, t) + X̃(s, t)2. (2.16)

Solving Eq. 2.16 and substituting back into Eq. 2.15, we find the Laplace transform
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ρ̃i(s, t):

ρ̃i(s, t) = e−2v
R t
0 g(t′)dt′ G̃i(s, t) (2.17)

= e−2v
R t
0 g(t′)dt′

{
s + g(t)−

s · exp[2v(st +
∫ t

0
g(t′)dt′)]

1 + 2v · s
∫ t

0
exp[2v(st′ +

∫ t′

0
g(t′′)dt′′)]dt′

}
.

We cannot perform the inverse Laplace transform of the above equation, even for
the simple case ofI(t)=const. [ı.e.,g(t) ∼ t] [65, 67]. However, from the form of
denominator in Eq. 2.17, we observe thatρ̃i(s, t) has a single simple pole along the
negative real-axis at|s = s∗(t)| � 1 for t � 1, regardless of the form thatg(t) may
have. Since the inverse Laplace transform can be written formally as the Bromwich
integral in the complex plane (ı.e., as the sum of residues of the integrand [71]), a
standard strategy for obtaining an asymptotic approximation toρi(x, t) for x � 1 is
to expandρ̃i(s, t) arounds∗(t) (|s∗(t)| � 1) to lowest order. Following Sekimoto’s
approach, we defineK(s, t) to be the denominator in Eq. 2.17, which becomes

ρ̃i(s, t) = e−2v
R t
0 g(t′)dt′

[
s + g(t)− 1

2v

∂K(s, t)

∂t
· 1

K(s, t)

]
,

Arounds = s∗(t), Eq. 2.17 can be approximated as

ρ̃i(s, t) ' e−2v
R t
0 g(t′)dt′

−2v
· ∂K(s∗(t), t)

∂t
· 1

∂K(s∗(t),t)
∂s

[s− s∗(t)]

= +
e−2v

R t
0 g(t′)dt′

2v
· ds∗(t)

dt
· 1

s− s∗(t)
. (2.18)

From Eq. 2.18, we arrive at the following asymptotic expression forρi(x, t):

ρi(x, t) ' e−2v
R t
0 g(t′)dt′

2v
· ds∗(t)

dt
· e−|s∗(t)|·x, (2.19)

for x, t � 1. Now, both the prefactor and the exponent [the poles∗(t)] can be obtained
very easily by simple numerical methods. On the other hand, an approximate expression
for s∗(t) itself can be found by first expandingK(s, t) in powers ofst and then solving
iteratively using Newton’s method [72]. (See Fig. 2.7) The result is

s∗(t) ' − 1

J0

(
1 +

J1

J2
0

+
4J2

1 − J0J2

2J4
0

)
, (2.20)

where

Jn ≡
∫ t

0

e
R τ
0 g(t′)dt′τndτ.

As we shall show below, Eq. 2.19 describes the behavior ofρi(x, t) accurately forx &
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Eq. 2.20

Figure 2.7: Plot ofs∗(t). The solid line is a direct numerical solution ofK(s, t) = 0
and the dashed line is Eq. 2.20.

2vt.

2.2.4 Island-to-island distribution ρi2i(x, t)

While most studies of 1D nucleation-growth have focused onρh(x, t) andρi(x, t) exclu-
sively, the distribution of the distances between the centers of two adjacent islands [the
island-to-island distributionρi2i(x, t)] has important applications. For instance, whether
homogeneous nucleation is a valid assumption cannot be knowna priori. Indeed, in the
recent DNA replication experiment that motivated this work, the “nucleation” sites for
DNA replication along the genome were found to be not distributed randomly, a result
that has important biological implications for cell-cycle regulation [46].

In the 1D KJMA model, Sekimoto has shown that a constant nucleation functionI0

cannot produce correlations between domain sizes [65, 66]. We speculate that the same
holds true for any local nucleation functionI(x, t), a conclusion that is also supported
by computer simulation2 [46]. Assuming a local nucleation function, we can write the
formal expression forρi2i(x, t) directly in terms ofρi(x, t) andρh(x, t):

ρi2i(x, t) = c

∫
{i1,h,i2}∈S

ρi(i1, t)ρh(h, t)ρi(i2, t)dS, (2.21)

whereS designates the constraint plane shown in Fig. 2.8 [S : (i1 + i2)/2+h=x]. The
normalization coefficientc can be obtained easily from the relation,

∫∞
0

ρi2i(x, t)dx =

2Even for a 1D nucleation-and-growth system, spatial correlations can exist. For a theoretical study
of deviations from the KJMA, see, for example, [73]. Blowet al. [24] and Junet al. [46] present experi-
mental evidence for size correlations of domain statistics in biological systems.
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Figure 2.8: Constraint planeS : (i1 + i2)/2 + h = x.

∫∞
0

ρi(x, t)dx =
∫∞

0
ρh(x, t)dx = n(t). From Eq. 2.21 and Fig. 2.8, it is easy to see

that
∫∞

0
ρi2i(x, t)dx = c[n(t)]3, and, therefore,c = [n(t)]−2.

Since the full solution forρi(x, t) is not known, we cannot integrate Eq. 2.21. How-
ever, we can still obtain an asymptotic expression forρi2i(x, t) using Eqs. 2.9 and 2.19.
Forx � 1, taking into account the constraintS, we find

ρi2i(x, t) ∼
∫
{i1,h,i2}∈S

e−|s
∗(t)|·i1−g(t)·h−|s∗(t)|·i2dS (2.22a)

∼ e−g(t)x + e−2|s∗(t)|x[− 1 + g(t)x− 2|s∗(t)|x
]
. (2.22b)

As we shall show later, Eq. 2.22b is an excellent approximation for allx andt. Note
that the first term on the right-hand side has the same asymptotic behavior as the hole-
size distributionρh(x, t), while the exponential factor in the second term comes from
the product of island-size distributions∼ e−|s

∗(t)|·i1 and∼ e−|s
∗(t)|·i2. The asymptotic

behavior ofρi2i(x, t) is dominated byρh(x, t) for f < 0.5 and byρi(x, t) for f > 0.5
(see below). But, at all times, we emphasize thatρi2i(x, t) is asymptotically exponential
for largex. From the mathematical point of view, bothρi(x, t) andρh(x, t) have ex-
ponential tails at largex, and the integral of the product of exponential functions again
produces an exponential.

2.3 Numerical simulation

Often, one has to deal with systems for which analytical results are difficult, if not
impossible, to obtain. For example, the finite size of the system may affect its kinetics
significantly, or the variation of growth velocity at different regions and/or different
times could be important. In such cases, computer simulation is the most direct and
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practical approach.
For one-dimensional KJMA processes, the most straightforward simulation method

is to use an Ising-model-like lattice, where each lattice site is assigned either 1 or 0 (or
-1, for the Ising model) representing island and hole, respectively. The natural lattice
size is∆x = v ·∆t, with v the growth velocity. At each timestep∆t of the simulation,
every lattice site is examined. If 0, the site can be nucleated by the standard Monte
Carlo procedure, ı.e., a random number is generated and compared with the nucleation
probabilityI(t) ·∆x ·∆t. If the random number is larger than the nucleation probability,
the lattice site switches from 0 to 1. Once nucleation is done, the islands grow by∆x,
namely, by one lattice size at each end.

Although straightforward to implement, the lattice model is slow and uses more
memory than necessary, as one stores information not only for the moving domain
boundaries but also for the bulk. Recently, Herricket al. used a more efficient al-
gorithm [45]. Specifically, they recorded the positions of moving island edges only.
Naturally, the nucleation of an island creates two new, oppositely moving boundaries,
while the coalescence of an island removes the colliding boundaries.

For the present study, we have developed an even more refined algorithm, which
has improved both simulation and analysis speeds by a factor of up to103 (Fig. 2.10).
Fig. 2.9 describes schematically the new algorithm (hereafter, the “double-list” algo-
rithm): The basic idea is to maintain two separate lists of lengths:{i} for islands,{h}
for holes.3 The second list{h} records the cumulative lengths of holes, while{i} lists
the individual island sizes. Using cumulative hole lengths simplifies the nucleation rou-
tine dramatically. For instance, for timest ranging betweenτ andτ + ∆τ , the average
number of new nucleations is̄N = I(τ) ·∆x ·∆t. Since the nucleation process is Pois-
sonian, we obtain the actual number of new nucleationsN = p(N̄) from the Poisson
distributionp. We then generateN random numbers between 0 and the total hole size,
namely, the largest cumulative length of holeshmax (the last element of{h}). The list
{h} is then updated by inserting theN generated numbers in their rank order. Accord-
ingly, {i} is automatically updated by inserting zeros at the corresponding places. If{h}
were to record the actual domain sizes as{i} does, the nucleation routine would become
much more complicated because the individual hole sizes would have to be taken into
account as weighting factors in distributing the nucleation positions along the template.

Fig. 2.10 compares run times for the standard lattice model to the continuous double-
list algorithm described above. We wrote and optimized both programs using the Igor
Pro programming language [74], and they were run on a typical desktop computer (Ap-
ple Macintosh, 700 Mhz G4 processor). For both, we used the same simulation condi-
tions: timestep∆t = 0.1, nucleation rateI(t) = 10−5t, and growth velocityv = 0.5.
Note that the performance of the lattice algorithm isO(N), whereas the double-list al-
gorithm is roughlyN1.5−2 for 105 ≤ N ≤ 107. The main reason is that the double-list
algorithm has to maintain dynamic lists{i} and{h}. This requires searching and re-
moving/inserting elements (as well as minor sorting), where each algorithm is linear,

3A slightly different way to record individual hole sizes has been used by Ben-Naimet al. [67].
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.

or roughlyO(N2) in overall. However, the double-list algorithm performed almost 3
orders of magnitudes faster even at a system size of107, and we did not attempt to im-
prove the efficiency further, for example, by using a binary search. By using a more
rapid computer and coding the algorithm directly in a lower-level language such as C,
one could presumably reduce the run time by a further factor of∼ 10.

Finally, the relative storage requirements for the lattice algorithm compared to the
double-list algorithm can be estimated by the ratioNlatt/nmax, whereNlatt is the total
number lattice sites per unit length andnmax is the domain density. Equivalently, one
may use`min/∆x, where`min is the minimum island-to-island distance and∆x the
lattice size. Since one usually sets up the simulation conditions such that`min � ∆x,
the double-list algorithm requires much less memory.

In the next section, we present the simulation results.

2.4 Comparison between theory and simulation

In Fig. 2.11, we compare the various analytical results obtained in the previous sec-
tions with a Monte Carlo simulation. Shown areρh(x, t), ρi(x, t), andρi2i(x, t) for
I(t) = 10−5 t at three different time points:t = 50, 75, and 100. The system size is
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Figure 2.11: Theory and simulation results forI(t) ∼ t. Size distributions are calculated
at these timepoints:t = 50, 75, and 100. (a) Hole-size distributionρh(x, t). (b) Island
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107 and the growth rate isv = 1/2. The chosen form of acceleratingI(t), linear in
time, is the simplest nontrivial nucleation scenario. It is also relevant to the description
of DNA replication kinetics inXenopusearly embryos, where theI(t) extracted from
experimental data has a bilinear form [45].

The agreement between simulation and analytical results is excellent. In particular,
we emphasize that the analytic curves in Fig. 2.11 are not a fit. Note that, forx � 1, all
three distributions decay exponentially as predicted by Eq. 2.9, 2.19, and 2.22b. [The
ρh(x, t) distributions are simple exponentials over the entire range ofx.]

One interesting feature ofρi(x, t) is the inflection point in the interval0 ≤ x ≤
2vt, whereρi(x, t) is slightly convex. Such behavior is even more dramatic when
I(t)=const. [65], andρi(x, t) is strongly convex. In other words,ρi(x, t) increases as
x approaches2vt−, but suddenly drops discontinuously atx = 2vt, decaying exponen-
tially at largerx. This peculiar behavior ofρi(x, t) originates from the fact that any
island larger than2vt must have resulted from the merger of smaller islands. Therefore,
for x ≤ 2vt, ρi(x, t) has an extra contribution from islands that contain only a single
seed in them, which makesρi(x, t) deviate from a simple exponential. Although such
discontinuities are expected at everyx = n ·2vt (n=1, 2, 3,. . .), higher-order deviations
decrease geometrically and are almost invisible.

Finally, the island-to-island distributionρi2i(x, t) provides important insight about
the “seed distribution” and about the spatial homogeneity of the nucleation. Note that
ρi2i(x, t) is not monotonic and has a peak atx > 0 [see Fig. 2.11(c)]. This is not
surprising becauseρi2i(x, t) → 0 asx → 0 from Eq. 2.21. On the other hand, we
see thatρi2i(x, t) decays exponentially at largex, as predicted in the previous section
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(Eq. 2.22b). In contrast toρi(x, t) andρh(x, t), however, the decay constant is not a
monotonic function of time. This can be understood as follows: at early times, the
large island-to-island distances come from large holes and thereforeρi2i(x, t) ∼ ρh(x),
as mentioned earlier. [The inset of Fig. 2.11(c) confirms this.] However, as the island
fractionf(t) approaches unity, the system becomes mainly covered by large islands, and
ρi2i(x, t) should approach∼ ρi(x, t)2 asymptotically (see the second term in Eq. 2.22b).

In Fig. 2.12, we plot the decay constants for the three different distributions,τh,
τi, andτi2i. Note that whenf < 0.5, τh ≈ τi2i, as discussed above. Asf → 1, the
behavior ofτi2i is controlled byτi, as suggested by Eq. 20. Becauseρi2i ∼ ρ2

i , we
expectτi2i → 0.5 τi; however, the corrections to this relationship in Eq. 20 imply that
this holds true only for largex andt. Note that the actual minimum ofτi2i is atf > 0.5
becauseρi2i depends onρ2

i and notρi alone.
One final note about the island-to-island distribution is that, unlikeρi(x, t), it is a

continuous function ofx. The reason for this is that for any island-to-island distancex,
the discontinuousρi(y < x, t) contributes toρi2i(x, t) in a cumulative way, as can be
seen in Eq. 2.21. This implies that there is no specific length scale where discontinuity
can come in. From a mathematical point of view, this is equivalent to saying that the
integral of a piecewise discontinuous function (the integrand in Eq. 2.21) is continuous.

2.5 Conclusion

To summarize, we have extended the KJMA model to the case where the homogeneous
nucleation rate is an arbitrary functionI(t) of time, deriving a number of analytic re-
sults concerning the properties of various domain distributions. We have also presented
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a highly efficient simulation algorithm for 1D nucleation-growth problems. Both ana-
lytical and simulation results are in excellent agreement.

In the next chapter, we discuss the application of these results to experiments in
general and to the analysis of DNA replication kinetics in particular.



Chapter 3

Application to DNA Replication
Kinetics

3.1 Introduction

Since its development in the late 1930s, the phenomenological model of nucleation and
growth of Kolmogorov, Johnson-Mehl, and Avrami (KJMA) has been widely applied
to the analysis of kinetics of first-order phase transformations, mostly in two and three
spatial dimensions [39–43]. The model has several exact results given the following
basic assumptions: (1) The system is infinitely large and untransformed at timet=0;
(2) nucleations occur stochastically, homogeneously, and independently one from one
another; (3) the transformed domains grow outward uniformly, keeping their shape; and
(4) growing domains that impinge coalesce.

Although the KJMA model is conceptually simple, experiments often have compli-
cating factors that make the contact between theory and experiment delicate and lead to
deviations from the basic model. For example, a principal result of the KJMA model is
that the fractionf(t) of the transformed volume at timet is

f(t) = 1− e−Ata , (3.1)

whereA anda are constants:A depends upon the growth velocityv, the nucleation rate
I, and the spatial dimensionD, while a is determined byI andD. In the literature,a is
called the Avrami exponent. “Avrami plots” of− ln[ln(1 − f)] vs. ln t should thus be
straight lines of slopea.1 Unfortunately, Eq. 3.1 often does not fit data well because the
experimental conditions do not satisfy the assumptions of the KJMA theory [57, 75, 76].
For example, nucleation can be inhomogeneous or correlated [46, 77]; real systems are
finite; and there is always measurement noise.

1 Eq. 3.1 comes from the more general expressionf(t) = 1 − exp[−vD
∫

I(~x, t)dDx], where the
integral is performed over the so-called extended volume. ForD = 3 andI(~x, t) = I = const., one
obtainsf(t) = 1 − exp (−π

3 Iv3t4), giving A = π
3 Iv3 andα = 4. Note that different values ofA are

related by rescalings ofv andI.

29
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In two- or three-dimensional systems, where only limited theoretical results such as
Eq. 3.1 are available, it can be difficult to pinpoint the origins of discrepancies between
experimental data and the predictions of the KJMA model. In one-dimensional systems,
however, we have seen in the previous chapter that one can push the analysis much
further than for the original version of the KJMA model [64–67, 78].

In this chapter, we shall show that a detailed theoretical understanding of the KJMA
model in 1D lets us compare theory and experiment more directly. In other words, we
can extract the kinetic parameters from data under less-than-ideal experimental circum-
stances. Our discussion will be set in the context of recent DNA-replication experiments
that have drawn attention from both the physics and biology communities [44, 45, 79].

3.2 Application of the 1D-KJMA Model to Experimen-
tal Systems

Although there are many analytical results for the 1D-KJMA model, only a very few 1D
systems that are well-described by this model have been identified (e.g., [60]), and very
little detailed analysis has been done on those systems. In the previous chapter, however,
we have shown that DNA replication can be mapped onto the 1D nucleation-growth
model. Equally important, Herricket al. have developed experimental methods that
can yield large quantities of data [44], allowing the extraction of biologically important,
detailed statistical quantities (see Sec. 2.1). We can thus extract the kinetic parameters
I(t) andv from data using the results obtained in Ch. 2.

For the ideal case, the procedure is straightforward. For real-world data, on the other
hand, one has to be cautious because of the generic problems explained above. We have
already mentioned that the molecular combing process chops the DNA into finite-size
segments, which effectively truncates the full statistics [44]. Another problem in the
experimental protocols is that anin vitro replication experiment usually has many dif-
ferent nuclei in the test tube. These nuclei start replication at different, unknown times
and locations along the genome [44, 79]. The asynchrony leads to sample heterogeneity
and creates a starting-time distribution for the DNA replication [45]. Finally, the finite
resolution of the microscope used to measure domain sizes may affect the statistics.

Below, we shall examine each of these complicating factors, present empirical cri-
teria for their significance, and then discuss the implications of these criteria for the
design of experiments.

To set the stage, we begin with the problem of extracting experimental parameters
from ideal data.

3.2.1 Ideal case

From the theoretician’s point of view, a system can be said to be ideal when it satisfies all
underlying assumptions of the theory. In the context of DNA replication and the KJMA
model, this means that the DNA molecule is infinitely long and that the initiation rate
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I of replication is homogeneous and uncorrelated. Also, statistics should be directly
obtainable at any time pointt at arbitrarily fine resolution. Because the growth velocity
of replicated DNA domains has been measured to be approximately constant, we shall
limit our analysis to this special case. One can then apply the KJMA model to a single
experimental realization to extract kinetic parameters such asI(t) andv.

In order to do this, we note that the simulation in Ch. 2 is in practice such a case
(system size =107, v = 0.5, ∆t = 0.1, I(t) = I · t, whereI = 10−5). Using the
theoretical results obtained in the previous chapter, we can find an expression to invert
I(t) from data. For example, the domain densityn(t) and the island fractionf(t) at
time t, given a time-dependent nucleation rateI(t) are

n(t) = g(t) e−2v
R t
0 g(t′)dt′

f(t) = 1− S(t) (3.2)

= 1− e−2v
R t
0 g(t′)dt′ .

In Eq. 3.2,g(t) =
∫ t

0
I(t′)dt′, andS(t) is the hole fraction. Note thatn(t)−1 is equal

to the average island-to-island distance¯̀
i2i(t) at timet. On the other hand, the average

hole size¯̀
h(t) is S(t)/n(t) = g(t)−1. Since all three domains (island, hole, and island-

to-island) have equal densitiesn(t) in one dimension, we have the following general
relationship among them, which is valid even in the presence of correlations between
domain sizes:

¯̀
i2i(t) = ¯̀

i(t) + ¯̀
h(t) (3.3a)

f(t) =
¯̀
i(t)

¯̀
i(t) + ¯̀

h(t)
. (3.3b)

In other words, there are only two independent quantities amongf(t), ¯̀
i(t), ¯̀

h(t), ¯̀
i2i(t),

and we can calculatè̄i(t) even if we do not know the exact expression for the island
distributionρi(x, t):

¯̀
i(t) =

1

g(t)

[
e2v

R t
0 g(t′)dt′ − 1

]
¯̀
h(t) =

1

g(t)
(3.4)

¯̀
i2i(t) =

1

g(t)
e2v

R t
0 g(t′)dt′ .

Note that¯̀i(t) [ ¯̀h(t)] is a monotonically increasing (decreasing) function of time,
and therefore, Eq. 3.3a implies that¯̀

i2i(t) has a well-defined minimum. We emphasize
that Eqs. 3.2 and 3.4 set the basic time and length scales,t∗ and`∗, of the system. Be-
cause the KJMA model has essentially only one scale, it is simpler than other common
stochastic models in physics that lack an intrinsic scale and hence show fractal behavior
(structure at all scales). Sincef(t) is sigmoidal, varying from 0 to 1, we definet∗ to be
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Figure 3.1: Parameter extraction from an almost ideal data set. (a) Inferred nucleation
rate vs. time; (b) Velocity vs. time; (c) Average domain sizes vs. time; (d) Island
fraction vs. time; theory and extractedf(t) overlap. In (c),̀ ∗ is the minimum average
eye-to-eye spacing, and sets the basic length scale. In (d),t∗ is the time at which 50%
of the genome has replicated. It sets the basic time scale.

the time required for the system to reachf = 0.5. On the other hand, we define`∗ to
be the minimum eye-to-eye (island-to-island) distance during the course of replication
[see Fig. 3.1(c) and (d)].

From Eqs. 3.2 and 3.4, it is straightfoward to invert the mean quantities to obtain the
nucleation rateI(t) and the growth velocityv:

I(t) =
d

dt

1
¯̀
h(t)

v = −1

2

ln S(t)∫ t

0
¯̀
h(t′)

−1
dt′

. (3.5)

Eq. 3.5 can then be applied to an ideal set of data, ı.e., one for which noise-free
measurements are made on infinitely long DNA. As Fig. 3.1 shows, we can recover the
input parameters from simulation results in Ch. 2 accurately: the extracted parameters
areI = (0.99± 0.04)× 10−5 andv = 0.50± 0.02. [The errors are the statistical errors
from the curve fits in Figs. 3.1(a) and (b)]. We note that the fluctuations visible for
t & 75 arise from using direct numerical differentiation in Eq. 3.5. One could reduce
the noise by appropriate data processing, using for example a smoothing spline [72].
However, because any data filtering is a delicate issue, and because direct numerical
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differentiation produced satisfactory results, we have decided to forego any smoothing.
We also note that there are statistical fluctuations related to the finite-size of the

system: asf(t) approaches 1, the number of domainsn(t) becomes very small; thus
even small changes inn(t) can cause significant fluctuations in average domain sizes.
However, the finite-size effect in this case becomes visible only when the number of
new nucleations in each step,N(t), is roughly 1 (t & 165 or f & 0.999). The effect can
be ignored forN(t) � 1 for the practically infinite system considered here [56, 57].

In the following sections, we consider the complications that arise from less-ideal
experimental conditions.

3.2.2 Asynchrony

As we mentioned above, data often come from experiments where the DNA from many
different independently replicating cells is simultaneously present in the same test tube.
The individual DNA molecules begin replicating at different unknown starting times.
In such cases, it is simpler to begin by sorting data by the replicated fractionf of the
measured segment [80]. The basic idea is that, for spatially homogeneous replication
(namely, nucleation and growth), all segments with a similar fractionf are at roughly
the same point in S phase. Sincef(t) is a monotonically increasing function oft, we can
essentially usef as our initial clock, leaving the conversion to real timet to a second
step.

Once the data have been sorted byf , we extract the initiation frequencyI as a func-
tion of f . Using Eqs. 3.2-3.4, one can straightforwardly obtain expressions analogous
to Eq. 3.5:

I(f)

2v
=

1
¯̀
i + ¯̀

h

d

df

1
¯̀
h

2vt(f) =

∫ f

0

(¯̀i + ¯̀
h) df. (3.6)

In Eq. 3.6,¯̀i and ¯̀
h are functions off . In other words, we have a direct inversionI/2v

vs. 2vt from data [Fig. 3.2(a)]. Note that bothI andt are always accompanied by the
factor2v, which has to be determined independently (see below). On the other hand, the
fluctuations in the extractedI/2v are the result of the direct numerical differentiation in
Eq. 3.6 discussed in the previous section.

In the two-color labeling experiments, we can compile statistics into histograms of
the distributionρ(f, τi) of replicated fractionsf at timeτi [Fig. 3.2(b)], whereτi is the
timepoint where the second dye was added (Fig. 2.1). Note that the spread inρ(f, τi)
is related to the starting-time distributionφ(τ) via the kinetic curvef(t), whereτ is the
laboratory time that each DNA starts replicating, andt is the duration of time since the
onset of replication. Sinceφ(τ)dτ = ρ(f(t), τi) · df(t), wheret = τi − τ , we obtain

ρ(f, τi) = φ(τ)×
(

df

dτ

∣∣∣
t=τi−τ

)−1

. (3.7)
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Figure 3.2: Inversion results in the presence of asynchrony and finite-size effects. (a)
I/2v vs. 2vt. The arrows indicate wheref = 0.8 in f vs. t curves in (d) for three
different molecule sizes:104 (unchopped), 1000 and 250 (chopped). (b)ρ(f, τi) for six
time points 60, 80, 100, 120, 140, 160 (from left to right). The circles are simulation
data; the solid lines are from Eq. 3.7, using the extracted parameters in Table 3.1. (c)
Optimization results for the starting-time distributionφ(τ). The solid line is a Gaussian
fit. (d) f vs. 2vt for `c = 250 and`c = 1000. The solid line is the unchopped case
(size104). (e) Average domain sizes vs.f . The empty circles are for the unchopped
case, while the dotted and dashed curves correspond to`c = 1000 and 250. (f) Plot of
log χ2 [ρ(f, τi)] (arbitrary units) vs.v for size104. The complete fit results are shown
in Table 3.1. See also text.

For a Gaussian starting time distributionφ(τ), one can in principle fit allρ(f, τi)’s
using three fitting parameters,v, the average starting timeτ0, and the starting time width
στ . Unfortunately, this “brute-force” approach did not produce satisfactory results, as
the basin of attraction of the minimum proved to be relatively small.

Our strategy, then, was first to obtain a coarse-grainedv vs. globalχ2 plot, shown
in Fig. 3.2, as follows:

1. Guess a range ofv betweenvmin andvmax.

2. Fix v (starting fromv = vmin), and traceρ(f, τi) back in time. For a specific
value off and timepointτi, the corresponding starting time isτi− t(f) (Eq. 3.6).
Repeat for allρ(f, τi)’s and reconstruct the starting time distributionφ(t).

3. Fit φ(τ) obtained in step 1 to an empirical model. [In the absence of correlations
among starting times, a Gaussian distribution is a reasonable choice.2 One may

2Since the only relevant parameters ofφ(τ) are its mean and standard deviation, maximum-entropy
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input extracted
I 1× 10−5 (0.98± 0.18)× 10−5

v 0.5 0.453
startingt (τ0 ± στ ) 39.6± 14.1 36.5± 13.9

Table 3.1: Comparison between input and extracted parameters in the presence of asyn-
chrony (startingt). Note that the inputτ0 ± στ is the Gaussian fit to a single realization
of 1000 molecules, whereτ0 = 40 andστ = 10.6

also know the rough form ofφ(τ) from an understanding of the origins of the
asynchrony.]

4. Regenerateρ(f, τi) using Eq. 3.7 with the parameters obtained in steps 2 and 3.
Calculateχ2 for ρ(f, τi). This is also a global fit, as theχ2 statistic is summed
over data from all time pointsτi.

5. Increasev to v+∆v and repeat 2–4. If there is a well-defined minimum of the
χ2(v) (with correspondingτ0 andστ ) [e.g., Fig. 3.2(f)], one can find a more ac-
curate estimate of the minimum using a standard optimization technique such as
Brent’s method [72].3 Otherwise, go back to 1 and choose a different range ofv.

In order to test how well the optimization method described above can work in the
face of asynchrony, we have repeated the simulation in Ch. 2 with several modifications.
First, we have used 1000 molecules that started nucleations asynchronously, following
a Gaussian distribution of average starting timeτ0 = 40 and of starting time width
στ = 10.4 Second, the size of each individual molecule is104 instead of107. This
keeps constant the total number of “DNA basepairs” analyzed.

Since we used the same nucleation rate, the time to replicate tof = 0.9 was
roughly 100 minutes, about the same as for the much larger system [see Fig. 3.1(d)
and Fig. 3.2(d)]. We have chosen six timepoints (τi = 60, 80, 100, 120, 140, 160) at
which to collect data, and the distributions of fractionf are shown in Fig. 3.2(b). The
spread inρ(f, τi) reflects the starting time distributionφ(τ).

We fit I/2v vs. 2vt usingI(t) = a+ I · t in Fig. 3.2(a), excluding the last few points
roughly abovef = 0.9 to take into account the finite-size effect (see the following
section). We then used the fit result to obtain the growth ratev by the optimization
method given above. The results are shown in Fig. 3.2 and Table 3.1. In the plot of
χ2 vs. v [Fig. 3.2(f)], we see a well-defined minimum ofχ2 at v = 0.453, 10% below
the input value 0.5. Fig. 3.2(b) and (c) are reconstructions ofρ(f, τi) andφ(τ) using
the parameters in Table 3.1. The minor discrepancies inτ0 andστ are acceptable, given
the small number of points ofρ(f, τi) used in the optimization (20 points in each of six

arguments also justify the choice of a Gaussian distribution [81].
3The “Optimize” function in Igor Pro [74] uses Brent’s method.
4We note that the actual realization of starting times in the particular simulation of Table 3.1 isτ0 =

39.6 andστ = 14.1. In other words, there are always errors related to the amount of data used in analysis,
but this is a separate issue from the extraction methods presented here.
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histograms). Note that the finite size of sampled DNA is responsible for a larger part of
the discrepancy with the original parameters than was our reconstruction algorithm.

The success of this method depends on the experimental design, as well; ı.e., one
has to choose the right timepointsτi in order to deduceφ(τ) accurately [see Fig. 3.2(b)
and (c)]. The key parameter is the ratioα between the replication time scalet∗ and the
starting-time widthστ , respectively:α = t∗/στ . For the case considered here (t∗ ≈ 75
andστ ≈ 14), α ≈ 5.4.

Ideally, α � 1 (better synchrony with slow kinetics), so thatρ(f, τi) has a well-
defined peak between0 < f < 1, andρ(f, τi) → 0 asf → 0 and 1. In this case, even
a singleρ(f, τi) can be used to reconstructφ(τ) and extractv accurately. For example,
for all timepoints in Fig. 3.2(b) each single histogram produced results that are accurate
to 15%.

For α � 1 (high asynchrony with fast kinetics),ρ(f, τi) is spread over0 ≤ f ≤ 1.
In this case, experimentalists should choose at leastN = στ/t

∗ timepoints to cover the
whole range ofφ(τ), where well-chosenτi’s spread evenly the peaks ofρ(f, τi) between
0 and 1.

3.2.3 Finite-size effects

As mentioned above, the DNA is broken up into relatively short segments during the
molecular-combing experiments. In order to estimate how the finite segment size affects
the estimates ofI(t) andv, we have cut the simulated molecules in the previous section
into smaller pieces of equal sizèc.7 Fig. 3.2 shows results for̀c = 1000 and 250,
with original size104. As one can see, there is a clear correlation between`c and the
statistics. First, the smaller the segments are, the smaller the average domain sizes
become asf → 1. This is as expected, since one obviously cannot observe a domain
size larger thaǹc. Note that an underestimate of average eye and hole sizes,¯̀

i and
¯̀
h, leads to an overestimate of the extractedI(t), as implied by Eq. 3.6. Second, as

`c becomes smaller, the completion times are underestimated. Third, the sharp increase
(decrease) in average eye (hole) sizes disappears, becoming nearly flat at a characteristic

7Experimentally, the size distribution of DNA fragments is log normal. See Fig. 4.8. Similar finite-
size effects are obtained for any unimodal distribution with the same mean.
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Figure 3.4: The finite-size effects and changes in the basic time and length scales.
Shown are two different initiation ratesI(t) = 10−5t and I(t) = 0.001. The verti-
cal line is where the average number of domains per molecule is 10. The y-axis has
been normalized relative to the initiation rate for an infinite system (β →∞).

fractionf ∗, and the kinetic curvef(t) significantly deviates from its sigmoidal shape,
becoming nearly linear. In fact, there is a close relationship between these last two
effects. The sharp increase in average eye size results from the merger of smaller eyes,
which dominates the late stage of replication kinetics. Since chopping DNA eliminates
the large eyes, as shown in Fig. 3.2(e), it effectively increases the number of domains
n(t) per unit length in truncated segments and overestimates the replication rate. (The
replication ratedf/dt = 2vn.)

We emphasize that the first two observations above imply that`c affects the basic
time and length scales,t∗ and`∗, of the (chopped) systems introduced in the previous
section. In Figs. 3.3(a)-(c), we re-plotf(t), I(t), and ¯̀

i and ¯̀
h using the dimensionless

axes. One can clearly see that the chopping process straightens the sigmoidalf(t) and
the average domain size curves. Nevertheless, the basic shape ofI(t) does not change:
curves corresponding to different values of`c collapse onto one another, and the finite-
size effect only makes the up-shooting tails steeper.

As criteria for significance of finite-size effects, we first define a new parameter
β = `c/`

∗, namely, the maximum average number of domains per chopped molecule
(aroundf = 0.5). Then, more careful observation of Figs. 3.3(a) and (c) suggests
that there might exist a critical valueβ∗ (or corresponding chopping size`∗c), where the
finite-size effects severely affect the statistics. In other words, forβ > β∗, one can
ignore the finite-size effects by excluding the last few data points close tof = 1 (Recall
that`∗ is the minimum average eye-to-eye spacing). To see this clearly, in Fig. 3.4, we
have plottedt∗/t∗∞ vs. β for two different cases:I(t) = 10−5 t andI(t) = 0.001, where
t∗∞ has been calculated using the basic kinetic curvef(t) = 1 − exp[−2v

∫ t

0
g(t′)dt′]

(ı.e., the system is infinitely large) [78] (see also footnote 1 under Eq. 3.1).
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Figure 3.5: The effect of coarse-graining. (a)f vs. 2vt. From left to right,∆x∗ = 0,
1, 5. (b)I/2v vs. 2vt. From top to bottom, the coarse-graining factor∆x∗ = 0 (no
coarse-graining), 1 (comparable to optical resolution), and 5. (c) Average domain sizes
vs. f . The empty circles are for no coarse-graining, while the dashed lines are for∆x∗

= 1 and 5 (dotted and dashed, respectively). (d)-(f) Rescaled graphs.

Indeed, changes int∗ are very slow aboveβ ≈ 10, but drop sharply below this
ratio. Sinceβ is the average number of domains per molecule, we argue that the KJMA
model can be applied to data directly when there are enough eyes in individual molecule
fragments (roughly, at least 10). On the other hand, whenβ . 10, one would require
more sophisticated theoretical methods to obtain correct statistics.

One subtle point is thatt∗, unlike `∗, is not very accessible experimentally and re-
quires data processing for accurate extraction [e.g., Fig. 3.2(d) or Fig. 3.5(b)].

Finally, we note that the sudden up-shooting in the tails of the extractedI(t)/2v vs.
2vt curves is yet another kind of finite-size effect related to numerical differentiation
(Eq. 3.5). This can be simply excluded from the analysis.

3.2.4 Finite-resolution effect

Another generic problem is the finite resolution of measurements. In molecular-combing
experiments, for example, epifluorescence microscopy is used to scan the fluorescent
tracks of combed DNA on glass slides. The spatial resolution (∼1 kb) means that
smaller domains will not be detectable. Thus, two eyes separated by a hole of size
≤ 1 kb will be falsely assumed to be one longer eye. We evaluate this effect by coarse-
graining the statistics with experimental resolutions∆x∗, while keeping∆x = v · dt
in simulation much finer. To coarse grain by a factorδ = ∆x∗/∆x, we have used the
raw, “unchopped” data set in the previous finite-size-effect section: after the simulation,
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we have scanned the final lists of eyes and holes,{i} and{h}, and removed any eyes
(holes) forδ < 1, combining them with the two flanking holes (eyes) into a larger hole
(eye) that equals the size of all three domains.

In Figs. 3.5(a)-(c), we show how the statistics change by coarse-graining only (ı.e.,
without chopping), where the coarse-graining factorsδ are 20 and 100.

The finite-resolution effect biases estimates in a way that is opposite to finite-size ef-
fects, ı.e., converting eyes (holes) forδ < 1 to holes (eyes) increases the average domain
sizes. As a consequence, the extractedI(t) is slightly underestimated. Nevertheless, the
curves in each off(t), I(t), and ¯̀

i and ¯̀
h almost perfectly collapse onto each other

when the axes are rescaled usingt∗ and`∗, confirming that, as with finite-size effects,
the main consequence is a change in the basic time and length scales of the problem
[Fig. 3.5(d)-(f)].

To find criteria for significance of finite-resolution effects, we recall that coarse-
graining falsely eliminates eyes and holes smaller than the resolution∆x∗ only (δ <
1). For example, statistics forf≈0 (small eyes) orf≈1 (small holes) can be affected
by coarse-graining. For these two cases, however, one can easily avoid a problem by
excluding data forf ≈ 0 and 1 from analysis.

On the other hand, a more serious situation can arise whenγ = `∗/∆x∗ . 1,
because a resolution comparable to the minimum eye-to-eye distance will seriously alter
the mean domain sizes̄`i and ¯̀

h and thus the extractedI(t), as well. Indeed, forγ � 1,
the ρ(f, τi)’s remain essentially unchanged (ı.e., the optimization result forv remains
the same) even atδ = 100 (where,γ ≈ 70) (data not shown). We conclude thatγ = 1
is the relevant criterion to test the significance of finite-resolution effects.

3.3 Discussion and Conclusion

In the previous section, we have tested various generic experimental limitations via
Monte Carlo simulation. When the system is large (107 for v = 0.5 andI(t) = 10−5 t),
we have been able to extract all the input parameters accurately from a single realiza-
tion of our simulation. As the experimental (simulation) conditions become less ideal,
however, one requires more sophisticated tools.

In the presence of asynchrony, we have demonstrated that the input parameters can
still be extracted to reasonable accuracy (roughly10% for α ≈ 5.4) using an optimiza-
tion method. In most DNA replication experiments,α & 1. In this case, the method
presented here can even be applied to dataρ(f, τi) for a single well-chosen timepointτi

to extractv. The accuracy increases as more data are collected for different timepoints.
Similarly, the significance of finite-size and finite-resolution effects can be estimated by
the criterionβ = `∗/`c ≈ 10 andγ = `∗/∆x∗ > 1, respectively.

Among the various experimental limitations we have tested, the finite-size effects
seem to be potentially the most serious problem in the molecular-combing experiments.
Fortunately, we expect the finite-size effects in the experiments and analysis of refs. [44,
45] and in Ch. 4 to be relatively insignificant becauseβ > 10. On the other hand, we
need more sophisticated theoretical tools to correct the finite-size effects forβ < 10.
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We recall that the coarse-graining of molecules affects the tails in Fig. 3.5(b) opposite to
the way the finite-size of molecules affects them. We thus speculate that an intelligent
way of annealing finite-sized molecules can reduce or correct the finite-size effects. We
leave a detailed evaluation of this idea for future work.

In summary, we have discussed how to apply the KJMA model to data to extract
kinetic parameters under various experimental limitations, such as asynchrony, finite-
size, and finite-resolution effects. For the application to DNA-replication experiments,
we have shown that finite-size effects can be ignored when the chopped molecules con-
tain enough domains (ı.e.,β & 10). Even when the size of molecules is smaller than the
critical value`∗c , the shape of the nucleation rateI(t) is not affected when plotted using
rescaled parameters. On the other hand, finite-resolution effects are insignificant when
γ � 1, which is the case for molecular combing experiments of DNA replication.

In the next chapter, we apply the analysis methods developed here to actual data
from recent experiments on theXenopusegg-extract system.



Chapter 4

Temporal Program of Xenopus
Early-Embryo DNA Replication

4.1 Introduction

In the previous two chapters, we have introduced the KJMA model of nucleation-and-
growth and have extended its 1D version to the case of arbitrary nucleation rateI(t) [78].
We then mapped DNA replication processes onto the KJMA model and demonstrated
that the “kinetic model” can be used to extract parameters such as the frequency of origin
firings I(t) and fork-growth ratev, which govern the kinetics of DNA replication [45,
82].

As replicon size and the duration of S phase depend on the values of these param-
eters, this information is indispensable for understanding the mechanisms regulating
S phase in a given cell system [36, 83–88]. In other words, understanding how these
parameters are coordinated during the replication of the genome is essential for eluci-
dating the mechanism by which S phase is regulated in eukaryotic cells. In particular,
the extractedI(t) can be interpreted as a “temporal” program of DNA replication, sug-
gesting a vocabulary that we find useful and intuitive for understanding the process of
replication of various higher eukrayotes from a single unified theoretical framework.

As we shall see, the key feature of recent DNA replication experiments is that they
have gathered much more data than previous experiments could possibly have obtained.
In order to appreciate these advances, we review briefly some of the experimental meth-
ods used to analyze DNA replication. For a more detailed review of classic methods,
see the book edited by S. Cotterill [89].

In the 1960s, several researchers used autoradiography [62, 90] and electron mi-
croscopy [91] to visualize DNA fibers of lengths ranging fromµm to mm. It soon
became obvious that one can use these visualization techniques to study DNA repli-
cation. Indeed, Huberman and Riggs in 1968 labeled replicating DNA molecules in
vivo with 3H-thymidine and stretched them out on filters or microscope slides and then
autoradiographed them [92]. Wherever3H-thymidine had been incorporated into the
DNA molecule, a track of silver grains was generated in the overlying photographic
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emulsion (sensitive to theβ-particles given off by3H), and the density of silver grains
in those tracks was proportional to the specific activity of the3H-thymidine. Thus, by
intentionally altering the specific activity of the3H-thymidine during an experiment,
they could infer the direction of DNA replication fork movement (as well as measure
the fork movement rates and distances between origins) from the corresponding change
in grain density in the final autoradiogram. In the mean time, electron micrographs
were actively used to study DNA replication. In the 1970s, for example, Kriegstein and
Hogness confirmed the bidirectional growth of replication forks [33], while Blumenthal
et al. analyzed spatio-temporal distribution of replication bubbles [80] ofDrosophila
early embryos.

In the 1980s and 1990s, similar but improved techniques were developed, such as the
use of fluorescent molecules instead of radioactive thymidine. An important example is
fluorescence in situ hybridization (FISH) [93, 94]. In this technique, the DNA probe is
either labeled directly by incorporation of a fluorescent-labeled nucleotide precursor, or
indirectly by incorporation of a nucleotide containing a reporter molecule (such as biotin
or digoxigenin) which after incorporation into the DNA is then bound to a fluorescently
labeled affinity molecule.

FISH can also be combined with other powerful techniques to achieve high-resolution
mapping. These techniques usually stretch DNA before hybridization. For example, di-
rect visual hybridization (DIRVISH) involves lysing cells with detergent at one end of
a glass slide, tipping the slide, and allowing the DNA in solution to stream down the
slide [24, 25, 95, 96]. The molecular-combing technique [23] used in theXenopusex-
periments of Herricket al. relies on the action of a receding air/water interface, or
meniscus, to uniformly straighten and align DNA molecules on a solid surface [see
Fig. 2.2(d)]. Molecular combing has the advantage not only of producing large quanti-
ties of data but also of reproducibly stretching the DNA at a controlled extension. Thus,
there is an accurate mapping between distances measured on a digital image and lengths
along the genome. As explained in Sec. 2.1, these techniques can produce “snapshots”
of replicating DNA that mimic the space-time diagram in Fig. 2.1. (See also Fig. 2.3.)

Although different from the labeling and stretching techniques mentioned above,
2D-gel electrophoresis [97, 98] and DNA microarrays [99–101] have also been impor-
tant tools to study replication kinetics, including mapping replication origins. For exam-
ple, 2D gel electrophoresis allows the separation of DNA fragments based on both size
and shape, thereby separating molecules containing branches in various arrangements
(e.g., bubble or Y shapes) from linear molecules. Thus, by using restriction enzymes
that cut DNA at specific sequences, one can map replication origins using 2D. In partic-
ular, the ratio of bubble-shaped molecules to Y-shaped molecules provides a qualitative
estimate of origin efficiency, the relative fraction of cell cycles in which a given origin
is activated [87, 102, 103].

Finally, microarrays containing an ordered set of unique-sequence DNA probes can
be used to monitor DNA replication. They are well-suited for giving information about
particular sites along the genome. For example, in a synchronous population of cells,
those genes that have replicated are twice as abundant as unreplicated genes. One can
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then identify the position of replication forks by measuring the abundance of each gene,
which is proportional to the amount of DNA that hybridizes to the array [99]. Similar
methods can be extended to construct replication profiles containing precise locations
of replication origins and fork velocities between neighboring origins [100].

These new experimental techniques now make it possible to extract large amounts
of data from the replication process, giving detailed statistics about numbers and sizes
of replicated domains as averaged over the genome, as well as many other related quan-
tities. In particular, in the experiments by Herricket al. discussed in this thesis [44],
over 200 Mb of DNA replication fragments was analyzed.

4.2 Results

In this chapter, we apply the KJMA formalism developed in the previous two chapters
to recent experiments on DNA replication in a particular model system ofXenopusegg
extracts. Although our analysis is particular to this system, we stress that it is easily
adaptable to experiments on other systems and experimental data described above.1

Since the kinetics of DNA replication in any cell system depends on two fundamen-
tal quantities,I(t) andv, one of the principal goals of our analysis is to derive accurate
values for these quantities, including any variation, during the course of S phase.2 The
model, as described in the previous chapters, allows us to draw on a number of previ-
ously derived results.

4.2.1 Summary of theXenopusegg extracts replication experiment

Here, we describe recent experimental results obtained on the kinetics of DNA repli-
cation in the well-characterizedXenopus laeviscell-free system [44, 79]. One of the
main goals of this chapter will be to show that, using the theoretical approach described
previously, one can extract more information – more reliably – than before from such
experiments.

In the Xenopusegg extracts replication experiments, fragments of DNA that have
completed one cycle of replication are stretched out on a glass surface using molecular
combing [23, 106, 107]. The DNA that has replicated prior to some chosen timeτi

is labeled with a single fluorescent dye, while DNA that replicated after that time is
labeled with two dyes. The result is a series of samples, each of which corresponds to a
different timet during S phase. Using an optical microscope, one can directly measure
eye, hole, and eye-to-eye lengths at that time. We can thus monitor the evolution of
genome duplication from time point to time point, as DNA synthesis advances. (See
Fig. 2.1, 2.2, and 2.3.)

1This type of model has also been shown to apply for the case of RecA polymerizing on a single
molecule of DNA [104].

2Althoughv = const. is a good approximation forXenopusearly embyos, in general, the fork velocity
can vary greatly in other eukaryotes depending on the position along the genome [100, 105], and it would
be interesting and important to do new experiments testing this approximation in more detail.
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Figure 4.1: Schematic representation of labeled and combed DNA molecules. Since
replication initiates at multiple dispersed sites throughout the genome, the DNA can be
differentially labeled, so that each linearized molecule contains alternating subregions
stained with either one or both dyes. The bubbles correspond to sequences synthesized
in the presence of a single dye (red). The green segments correspond to those sequences
that were synthesized after the second dye (green) was added. The result is an un-
ambiguous distinction between eyes and holes (earlier and later replicating sequences)
along the linearized molecules. Replication is assumed to have begun at the midpoints
of the bubble sequences and to have proceded bidirectionally from the site where DNA
synthesis was initiated. Measurements between the centers of adjacent eyes provide
information about replicon sizes (eye-to-eye distances). The fraction of the molecule
already replicated by a given time,f(t), is determined by summing the lengths of the
bubbles and dividing that by the total length of the respective molecule.

Cell-free extracts of eggs fromXenopus laevissupport the major transitions of the
eukaryotic cell cycle, including complete chromosome replication under normal cell-
cycle control and offers the opportunity to study the way that DNA replication is coor-
dinated within the cell cycle. In the experiment, cell extract was added atτ = 2 min,
and S phase began 15 to 20 min later. DNA replication was monitored by incorporating
two different fluorescent dyes into the newly synthesized DNA. The first dye was added
before the cell enters S phase in order to label the entire genome. The second dye was
added at successive time pointsτi = 25, 29, 32, 35, 39, and 45 min, in order to label
the later replicating DNA (Fig. 4.1). DNA taken from each time point was combed, and
measurements were made on replicated and unreplicated regions.
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The same approach has recently been adapted to study the regulatory parameters of
DNA replication in HeLa cells [96]. Molecular combing, however, has the advantage
that a large amount of DNA may be extended and aligned on a glass slide which en-
sures significantly better statistics (over several thousand measurements corresponding
to several hundred genomes per coverslip). Indeed, the molecular-combing experiments
provide, for the first time, easy access to the quantities of data necessary for testing
models such as the one advanced in this paper.

4.2.2 Generalization of the model to account for specific features of
the X. laevisexperiment

The experimental results obtained on the kinetics of DNA replication in thein vitro cell-
free system ofXenopus laevis[44, 79] were analyzed using the kinetic model developed
in the previous chapters. In formulating that model, we had to take into account explic-
itly a number of experimental limitations discussed in the previous chapter:

1) One goal of the experiment is to measure the initiation functionI(t), which is the
probability of initiating an origin per unit length of unreplicated DNA after time inter-
val t since the onset of replication. The simplest assumptions, in terms of our model,
would be that eitherI is peaked at or neart = 0 (all origins initiated at the beginning
of S phase) orI(t) = const., (origins initiated at constant rate throughout S phase).
However, neither assumption turns out to be consistent with the data analyzed here;
thus, we formulated our model to allow for arbitrary initiation patterns and deduced
an estimate forI(t) directly from the data. We note that initiation is believed to oc-
cur synchronously during the first half of S phase inDrosophila melanogasterearly
embryos [80, 86]. Initiation in the myxomycetePhysarum polycephalum,on the other
hand, occurs in a very broad temporal window, suggesting that initiation occurs contin-
uously throughout S phase [61]. Finally, recent observations suggest that, inXenopus
laevis, early embryos nucleation may occur with increasing frequency as DNA synthe-
sis advances [24, 44, 79]. By choosing an appropriate form forI(t), one can account for
any of these scenarios. Below, we show how measured quantities may, using the model,
be inverted to provide an estimate forI(t).

2) The basic form of the model assumes implicitly that the DNA analyzed began repli-
cation at “laboratory time”τ = 0, but this may not be so, for two reasons:

i) In the experimental protocols, the DNA analyzed comes from approximately
20,000 independently replicating nuclei. Before each genome can replicate, its nuclear
membrane must form, along with, presumably, the replication factories. This process
takes 15-20 minutes [108–110]. Because the exact amount of time can vary from cell to
cell, the DNA analyzed at timeτi in the laboratory may have started replicating over a
relatively wide range of times.
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ii) In eukaryotic organisms, origin activation may be distributed in a programmed
manner throughout the length of S phase, and, as a consequence, each origin is turned
on at a specific time (early and late) [111].

In the current experiment, the lack of information about the locations of the measured
DNA segments along the genome means that we cannot distinguish between asynchrony
due to reasons (i) or (ii). We have thus accounted for their combined effects using the
starting-time distributionφ(τ) introduced in Ch. 3, which is the probability—for what-
ever reason—that a given piece of analyzed DNA began replicating at timeτ in the lab.

3) The combed DNA is broken down into relatively short segments (100-300 kb, typi-
cally). Also, the experiments are all analyzed using an epifluorescence microscope to
visualize the fluorescent tracks of combed DNA on glass slides (with spatial resolution
≈ 0.3µm). Thus, we have to estimateβ = `c/`

∗ andγ = `∗/∆x∗ for these effects. (See
Sec. 3.2.3.)

4.2.3 Application of the kinetic model to the analysis of DNA repli-
cation in X. Laevis

Using the generalizations discussed above, we analyzed recent results obtained on DNA
replication in theXenopus laeviscell-free system. DNA taken from each time point was
combed, and measurements were made on replicated and unreplicated regions. Statistics
from each time point were then compiled into six histograms (one for each time point)
of the distributionρ(f, τi) of replicated fractionsf at lab timeτi (Fig. 4.2).

One can immediately see from Fig. 4.2 the need to account for the spread in starting
times. If all the segments of DNA that were analyzed had started replicating at the same
time, then the distributions would have been concentrated over a very small range of
f . But, as one can see in Fig. 4.2(c), some segments of DNA (within the same time
point) have already finished replicating (f = 1) before others have even started (f = 0).
This spread is far larger than would be expected on account of the finite length of the
segments analyzed. Because of the need to account for the spread in starting times, it is
simpler to begin by sorting data by the replicated fractionf of the measured segment.
We thus assume that all segments with a similar fractionf are at roughly the same point
in S phase, an assumption that we can check by partitioning the data into subsets and
redoing our measurements on the subsets. In Fig. 4.3(a)-(c), we plot the mean values
`h, `i, and`i2i againstf .

We then findf(t), I(t), and the cumulative distribution of lengths between activated
origins of replication,Itot(t). (See Fig. 4.4.) The direct inversion forI(t) [Fig. 4.4(b)]
shows several surprising features: First, origin activation takes place throughout S phase
and with increasing probability (measured relative to the amount of unreplicated DNA),
as recently inferred from a cruder analysis of data from the same system using plasmid
DNA [79]. Second, about halfway through S phase, there is a marked increase in initia-
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Figure 4.2:ρ(f, τi) distributions for the six time points. The curves show the probability
that a molecule at a given time point (a)-(f) has undergone a certain amount of replica-
tion before the second dye was added. The filled circles represent the experimental data.
The results of the Monte Carlo simulation are shown in open circles; analytical curves
are the global fitting.

tion rate, an observation that, if confirmed, would have biological significance. It is not
known what might cause a sudden increase (break point) in initiation frequency halfway
through S phase. The increase could reflect a change in chromatin structure that may
occur after a given fraction of the genome has undergone replication. This in turn may
increase the number of potential origins as DNA synthesis advances [112].

The smooth curves in Fig 4.3(a)-(c) are fits based on the model, using anI(t) that
has two linearly increasing regions, with arbitrary slopes and “break point” (three free
parameters). The fits are quite good, except where the finite size of the combed DNA
fragments becomes relevant. For example, when mean hole, eye, and eye-to-eye lengths
exceed about 10% of the mean fragment size, larger segments in the distribution for
`h(f), etc., are excluded and the averages are biased down. These biases due to finite
sizes of the molecules also affect the last few points in the extractedI(t) (see below).
We confirmed this with the Monte Carlo simulations, the results of which are overlaid
on the experimental data. The finite fragment size in the simulation matches that of the
experiment, leading to the same downward bias. (See, also, Sec. 3.2.3) In Fig. 4.43,
we overlay the fits on the experimental data. We emphasize that we obtainI(t) directly
from the data, with no fit parameters, apart from an overall scaling of the time axis. The
analytical form is just a model that summarizes the main features of the origin-initiation
rate we determine via our model, from the experimental data. We note that the last

3Fig. 4.4(d) has been added after the thesis submission.
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Figure 4.3: Mean quantities vs. replication fraction. (a) average hole size`h(f); (b)
average eye sizèi(f); (c) average eye-to-eye size`i2i(f). Filled circles are data; open
circles are from the Monte Carlo simulation; the solid curve is a least-squares fit, based
on a two-segmentI(t); (d) curves in (a)-(c) collapsed onto a single plot, confirming the
mean-field relations (Eqs. 3.3a and 3.3b). (The discrepancies nearf = 0 and1 reflect
measurement errors. Very small eyes or holes may be missed because of limited optical
resolution; very large eyes or holes may be eliminated because of finite segment sizes.)

few points in Fig. 4.4(b) were excluded in the analysis for reasons explained above.4

The important result isI(t). From the maximum ofItot(t), we find a mean spacing
between activated origins of 6.3± 0.3 kb, which is much smaller than the minimum
mean eye-to-eye separation 14.4± 1.5 kb.

In our model, the two quantities differ if initiation takes place throughout S phase, as
coalescence of replicated regions leads to fewer domains, and hence fewer inferred ori-

4To justify this, we first simulated longer molecules and then created a series of data sets by chopping
the longer molecules. We observed that, as the chopped molecules become smaller, the downward bias
in the extractedI(t) becomes more visible and similar to the one in Fig. 4.4(b). The downward bias
observed here results from a different choice of algorithm for extractingI(t) than was used in Ch. 3. In
that chapter, we used Eq. 3.5, while, in this chapter, we usedI(t) = − 1

2v
d2

dt2 ln[1 − f(t)]. These two
methods are identical for ideal systems, but they can lead to different biases (for example, upward and
downward) in the presence of finite-size effects.
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Figure 4.4: (a) Fraction of replication completed,f(t). The points are derived from
the measurements of mean hole, eye, and eye-to-eye lengths. The curve is an analytic
fit (see below). (b) Initiation rateI(t). The large statistical scatter arises because the
data points are obtained by taking two numerical derivatives of thef(t) points in (c).
The last several points are artifacts due to finite-size effects and were not included in
the analysis. (c) Integrated origin separation,Itot(t), which gives the average distance
between all origins activated up to timet. (d) Total number of initiations per 100 kb·
min. There are two distinct regimes; in the second-half of S phase, the total number of
initiations (1.1) is roughly double the one (0.53) in the first-half. In (a)-(c), the black
curves are from fits that assume thatI(t) has two linear regimes of different slopes. The
form we chose forI(t) was the simplest analytic form consistent with the data in (b).
The parameters for the least-squares fits (slopesI1 andI2, break pointt1) are obtained
from a global fit to the eight data sets in Fig. 4.2(a)-(f) and Fig. 4.3(a)-(b), ı.e.,ρ(f)
from six time points,̀ h(f), and`i(f).

gins.5 The mean eye-to-eye separation is of particular interest because its inverse is just
the domain density (number of active domains per length), which can be used to estimate
the number of active replication forks at each moment during S phase. For example, the
saturation value ofItot corresponds to the maximum number (about 480,000/genome) of

5The minimum average eye-to-eye size is obtained by differentiating¯̀
i2i(t) = 1

g(t)e
2v

R
g(t′)·dt′ ,

whereg(t) =
∫ t

0
I(t)dt. For a constant initiation rateI(t) = I0, one obtains̄̀ ∗

i2i =
√

2e ·
√

v/I0.

Also, we recall¯̀i2i(t) = ¯̀
i(t) + ¯̀

h(t) =
¯̀
h(t)
1−f , which allows one to collapse the experimental observa-

tions of all three mean curves onto a single one [see Eq. 3.4 and Fig. 4.3(d)].
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Figure 4.5: Starting-time distributionφ(τ). Solid curve is a least-squares fit to a Gaus-
sian distribution.

active origins of replication. Since there are about 400 replication foci/cell nucleus, this
would indicate a partitioning of approximately 1,200 origins (or, equivalently, about 7.5
Mb) per replication focus [108, 113]. The distribution off values in theρ(f, τi) plots
can be used to deduce the starting-time distribution [φ(τ)], along with the fork velocity
v (see Sec. 3.2.2). (Fig. 4.5). The spread in starting timesφ is consistent with a Gaus-
sian distribution, with a mean of15.9 ± 0.6 min. and a standard deviation of6.1 ± 0.6
min. For the fork velocity, we findv = 615± 35 bases/min., in excellent agreement
with previous estimates∼ 600 bases/min [114, 115]. As with thef data, we extracted
φ(τ) andv from a global fit to data from all six time points.

4.3 Discussion

4.3.1 Initiation throughout S phase

The view that we are led to here, of random initiation events occurring continuously
during the replication ofXenopussperm chromatin in egg extracts, is in striking con-
trast to what has until recently been the accepted view of a regular periodic organization
of replication origins throughout the genome [84, 85, 116, 117]. For a discussion of ex-
periments that raise doubts on such a view, see Berezney [105]. The application of our
model to the results of Herricket al. indicates that the kinetics of DNA replication in the
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Effect Parameter Definition when significant? in Xenopusexpt.
asynchrony α t∗/στ � 1 2.5
finite size β `∗/`c < 10 7-20

finite resolution γ `∗/∆x∗ < 1 10-100

Table 4.1: Summary table concerning the important parameters for experimental limi-
tations.

X. laevis in vitrosystem closely resembles that of genome duplication in early embryos.
Specifically, we find that the time required to duplicate the genomein vitro agrees well
with what is observedin vivo. In addition, the model yields accurate values for repli-
con sizes and replication fork velocities that confirm previous observations [36, 114].
Though replicationin vitro may differ biologically from what occursin vivo, the results
nevertheless demonstrate that the kinetics remains essentially the same. Of course, the
specific finding of an increasing rate of initiation invites a biological interpretation in-
volving a kind of autocatalysis, whereby the replication process itself leads to the release
of a factor whose concentration determines the rate of initiation. This will be explored
in future work.

4.3.2 Asynchrony, finite-size, and finite-resolution effects

In Ch. 3, we introduced various parameters to estimate the significance of experimen-
tal limitations in applying the kinetic model to data. In the data by Herricket al.
used here for analysis, all three effects – asynchrony, finite-size, finite-resolution – are
present. Fortunately, we have found that the asynchrony is well-described by the Gaus-
sian starting-time distributionφ(τ). In this case,α = t∗/στ ≈ 2.5 (for the duration of S
phaset∗ ≈ 15 mins. and the starting-time widthστ of 6.1 mins), and the optimization
method presented in Ch. 3 can be applied to the data to extractv fromρ(f, τi) accurately.

On the other hand, the significance of finite-size effects can be estimated by the
criterion β = `∗/`c ≈ 10. In our case,̀ ∗ for Xenopussperm chromatin is roughly
15 kb, while the typical size of combed molecules ranges between 100 - 300 kb, thus
giving 7 . β . 20 and making the finite-size effects relatively insignificant. However,
we note that the origin spacing of many higher eukaryotes, includingXenopusafter
the mid-blastula transition, can be as large as 100 kb. In such cases, it is of critical
importance to obtain long combed molecules (> 1 Mb).

Similarly, finite-resolution effects are insignificant whenγ = `∗/∆x∗ > 1. This
condition is satisfied in almost all molecular-combing experiments of DNA replication,
since∆x∗ ≈ 1 kb while `∗ typically ranges between 10 and 100 kb (γ ≈ 10 to 100).

In Table. 4.1, we present a summary showing the relative importance of these “real-
world” effects.



52 CHAPTER 4. TEMPORAL PROGRAM OF XENOPUSDNA REPLICATION

4.3.3 Directions for future experiments inX. laevis

One effect that we did not include in our analysis is a variable fork velocity. For exam-
ple,v might decrease as forks coalesce or as replication factor becomes limiting toward
the end of S phase [108–110].

Another important question is to separate the effects of any intrinsic distribution due
to early and late-replicating regions of the genome of a single cell from the extrinsic
distribution caused by having many cells in the experiment. One approach would be to
isolate and comb the DNA from asinglecell. Although difficult, such an experiment
is technically feasible. The latter problem could be resolved byin situ fluorescence
observations of the chosen cell.

4.3.4 Applications to other systems

One can entertain many further applications of the basic model discussed above, which
can be generalized, if need be. For example, Blumenthalet al. interpreted their results
on replication inDrosophila melanogasterfor ρi2i(`, f) to imply periodically spaced
origins in the genome [80]. (See their Fig. 7.) It is difficult to judge whether their
peaks are real or only a statistical happenstance; but, if the conclusion is indeed that the
origins in that system are arranged periodically, the kinetics model could be generalized
in a straightforward way (by introducing anI(x, τ) that was periodic inx).

Very recently, detailed data on the replication of budding yeast (Saccharomyces cere-
visiae) have become available [100]. The data provide information on the locations
of origins and the timings of their initiation during S phase. These data support the
view of origin initiation throughout S phase. Unlike replication inXenopusprior to the
mid-blastula transition, origins in budding yeast are associated with highly conserved
sequence elements (autonomous replication sequence elements, or ARSs). Raghura-
manet al. [100] also give the first estimates of thedistributionof fork velocities during
replication. Although broad, the distribution is apparently stationary, and there is no
correlation between velocities and the time in S phase when the forks are initiated. The
model developed here could be generalized in a straightforward way to the case of bud-
ding yeast. Knowing the sequence of the genome and hence the location of potential
origins means that the initiation function would be an explicit function of positionx
along the genome, with peaks of varying heights at each potential origin. The advan-
tage of the kind of modeling advanced here would be the opportunity to derive quantities
such as the replication fraction as a function of time in S phase. Raghuramanet al. fit
their data for this “timing curve” to an arbitrarily chosen sigmoidal function. (See their
supplementary data, Section II-5.) Such modeling will make it easier to find meaningful
biological explanations of the programming of S phase evolution.

4.3.5 The random-completion problem: part I

One outstanding issue in DNA replication in eukaryotes is the observation that the repli-
cation origins cannot be too far apart, as this would prevent the genome from being repli-
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not proven, that MCMs form the eukaryotic DNA replication

fork helicase.(9) The recruitment of the MCM2-7 complex at

origins (called replication ‘‘licensing’’) takes place during late

mitosis and the G1 phase, in preparation for the next round of

chromosomeduplication. Licensing strictly requires a complex

of six proteins first identified in budding yeast, the origin

recognition complex (ORC).(10) In yeast, ORC binds replica-

tion origins directly and stably across the cell cycle.(11) In

metazoa, the stability of chromatin association of ORC is

higher at the G1/S transition.(12) Origin licensing also requires

CDC6 and CDT1, which must both interact with ORC to load

MCM2-7 onto chromatin.(13–15) Importantly, once MCM2-7

have been loaded, ORC and probably CDC6 and CDT1

become dispensable for subsequent replication.(14,16,17)

Once loaded, MCM2-7 complexes await activation during

S phase. This process is triggered by at least two kinases,

CDC7/DBF4 and the S-CDKs, and involves the ordered

assembly of additional proteins, among which CDC45 has

emerged as a pivotal factor.(1) CDC45 origin association

triggers origin DNA unwinding and ultimately leads to the

association of DNA polymerases with the unwound DNA

(Fig. 1).(18,19) In yeast, MCM2-7 dissociate from origins either

upon replication initiation(20,21) or upon passive replication

from a neighboring origin.(22,23) Biochemical and immuno-

fluorescence studies in metazoan cells also suggest that

MCMs are progressively excluded from replicated chromatin

during S phase.(24–29) The reloading of MCMs is prevented

until cells pass throughmitosis byCDKsandbygeminin.CDKs

interfere with various functions of ORC, CDC6 and MCMs in

licensing.(30) Geminin (only found in metazoa) binds and

inhibitsCDT1.(31,32) Cyclins (and thereforeCDKactivities) and

geminin are only destroyed in latemitosis, ensuring that a new

round of origin licensing can only take place after sister

chromatid segregation. The strict temporal separation ofMCM

loading and activation and the release of MCMs from repli-

cated DNA ensure that no sequence is replicated more than

once in a single S phase.

Although several lines of evidence argue that the MCMs

form the replicative DNA helicase, some observations are not

easily explained by this model. First, immunofluorescence

studies in mammalian cells(26–28) and in frog egg extracts(29)

show that, in contrast to bona fide replication fork proteins such

as RP-A and PCNA, which colocalize with newly replicated

DNA, most of the MCMs colocalize with unreplicated DNA.

One study showed a lack of co-localization of MCMs directly

with RP-A and PCNA, or with DNA synthesized during the

period preceding fixation.(26) Second, chromatin immunopre-

cipitation experiments suggest that ORC and MCMs do not

resideonclosely adjacent sites inmammalian chromatin, even

in cells arrested at the G1/S boundary.(33) Finally, the number

of chromatin-bound MCM complexes exceeds the number of

replication origins and ORC complexes by a factor of 10–100

in various organisms. The ‘‘MCM paradox’’(26) is that MCM

proteins are in vast excess and do not colocalize with

replication forks.

Dispersive versus site-specific initiation

While replication initiation proteins are widely conserved,

replication origins are not.(34) In S. cerevisiae, specific se-

quences that can promote autonomous plasmid replication

(autonomously replicating sequences; ARSs) define the sites

where the synthesis of new DNA strands starts both on

plasmids and within yeast chromosomes.(35) Genomic foot-

printing indicates that ARSsare stably boundbyORC through-

out the cell cycle(11) and that, during latemitosis andG1 phase,

MCM2-7 bind alongside ORC to form a larger prereplicative

complex (pre-RC).(36) High-resolution mapping has shown

that replication initiates precisely at the center of the pre-RC

footprint for one ARS.(37)

In contrast to yeast, attempts to isolate specific sequences

that provide autonomous replication to transfected plasmids

in animal cells have been inconclusive.(34) In one study with

human cells, any sequence appeared suitable provided it is

large enough (>10 kb),(38) and replication was found to initiate

at multiple, apparently random sites on the plasmid.(39)

Physical mapping of chromosomal origins in adult animal cells

has given more complex results. At loci such as the human

lamin B2(40) and b-globin(41) genes, replication initiates at

Figure 1. Licensing and activation of replication

origins.MCM2-7are loadedduring latemitosis and

G1 phase onto replication origins by ORC, CDT1

and CDC6 (origin licensing). Pre-replication com-

plexes (Pre-RC) are activated at the G1/S transi-

tion by two kinases, CDC7/DBF4 and S-CDKs.

A key step in this transition to replication is the

recruitment of CDC45. MCM2-7 dissociate from

DNA as S phase progresses. Reloading of MCM2-

7 is prevented by at least two inhibitors, geminin

and the CDKs. This inhibition persists until cells

pass through mitosis, when geminin and cyclins

are destroyed.

Review articles

BioEssays 25.2 117

Figure 4.6: Licensing and activation of replication origins. MCM2-7 complexes, pro-
teins that are believed to be competent to initiate replication, are loaded during late
mitosis and G1 phase onto replication origins by ORC, CDT1, and CDC6 (origin li-
censing). Pre-replication complexes (pre-RC) are activated at the G1/S transition by
two kinases, CDC7/DBF4 and S-CDKs. A key step in this transition to replication
is the recruitment of CDC45. MCM2-7 dissociate from DNA as S phase progresses.
Reloading of MCM2-7 is prevented by at least two inhibitors, geminin and the CDKs.
This inhibition persists until cells pass through mitosis, when geminin and cyclins are
destroyed. Figure and caption from Ref. [35] by O. Hyrien. Copyrightc©2003 Wiley-
Liss, Inc., a subsidiary of John Wiley & Sons, Inc. Reprinted by permission of John
Wiley & Sons, Inc.

cated completely within the length of a single S phase [118]. In the case ofXenopus
early-embryo replications, most solutions suggested so far to prevent the formation fa-
tal long origin spacings concern the density and the distribution of pre-replication com-
plexes (pre-RCs) of highly conserved proteins, which assemble at ORC-bound DNA
sites before the cell enters S phase (Fig. 4.6) [35].

For example, one solution that has been proposed is that there is an excess of pre-
RCs (e.g., Lucaset al. [79], and references therein). In this case, the position of each
potential origin of replication (POR) can be distributed randomly, with a statistically
insignificant probability of having large gaps between PORs. The problem with this
solution has been that the average POR spacing must be much smaller (less than 1-2 kb)
than the reported 7-16 kb spacings ofXenopus ORC (XORC), protein complex that
has been believed to be directly associated with PORs until recently [83, 119],

A second proposed solution to the random-completion problem is to invoke corre-
lations in POR spacings. In other words, instead of assuming a purely random pre-RC
distribution, one imposes constraints that force a partial periodicity on the POR spac-
ing, so that most of the origins are spaced 5-15 kb apart (Blow et al. [24] and references
therein). This suppresses the formation of large gaps but raises other issues. First, it
requires an unknown mechanism to achieve this periodicity of POR spacing. Second, it
assumes implicitly that most of the PORs fire during S phase, to prevent the 30 kb gap
that could arise from a origin’s failure to initiate. Blow’s model is thus not robust in that
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Figure 4.7: (a) Histogram of positions of initiation events for holes 8-22 kb in size. The
events are determined by looking for replicated domains that are small enough that they
very likely contain only a single replication origin. The state of the molecular fragment
is then propagated back in time to the moment of initiation, where one records the hole
size and relative position of the initiation event within the hole. The inset shows a hole
flanked by two eyes. The experimental histogram shows that it is more likely that a new
initiation occurs near the center of a hole, an observation compatible with the looping
scenario but not with the purely random initiation scenario. (b) Holes larger than 22 kb.
The difference between experiment and simulations (both random and loop formation)
is much smaller than for small holes in (a).

the failure of a single origin to initiate could double the time needed complete replica-
tion. Third, if origins initiate throughout S phase, then there needs to be some kind of
correlation that forces the more widely spaced origin groups to initiate early enough in
S phase to complete replication in the required time.

Implicitly, our model adopts language consistent with the first solution, but it is
straightforward to consider the correlations assumed in the second solution. The pres-
ence of significant correlations in PORs would not invalidate the results presented here,
which pertain to mean quantities (e.g., Fig. 4.3); however, it would change their inter-
pretation and could change biological models that one might try to make to explain the
observed kinetic parameters we extract using the KJMA model. Indeed, the resolution
of the origin-spacing problem in early embryos requires not only the temporal [I(t)] but
also “spatial” program of DNA replication, and our data also suggest that initiation of
replication origins is not spatially homogeneous. As an example, Fig. 4.7 shows his-
tograms that record the relative position of new origins within a hole. In Fig. 4.7(a), we
plot the distribution for small holes, 8-22 kb in length.6 The experimental data shows a
strong peak near 0.5, implying a tendency for origins to be as far away from other repli-
cating domains as possible. By contrast, the experimental data for large holes shows
a much more uniform distribution. In simulations that use spatially homogeneous ini-

6Holes smaller than 8 kb in length showed a bias toward the center in the experimental data and were
not included for comparison to models lacking such bias.
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tiation, new origins can appear almost anywhere in a hole, regardless of its size. This
picture fits the large-hole data [Fig. 4.7(b)] but not the small-hole data [Fig. 4.7(a)]. By
contrast, when we put in the effects of suppression of origin initiation by chromatin
looping at very close spacings and an enhancement of initiation at a larger, character-
istic distance, the simulation results match more closely the data of Fig. 4.7(a), while
continuing to agree with the large-hole case.

In the next chapter (Sec. 5.3.2), we shall explain how the origin-spacing problem
(or, the “random-completion” problem) can be solved by understanding the physical
properties of chromatin and its looping.

4.4 Conclusion

So far, we have introduced a class of theoretical models for describing replication kinet-
ics that is inspired by well-known models of crystal-growth kinetics. The model allows
us to extract the rate of initiation of new origins, a quantity whose time dependence has
not previously been measured. With remarkably few parameters, the model fits quanti-
tatively the most detailed existing experiment on replication inXenopus. It reproduces
known results (for example, the fork velocity) and provides the first reliable description
of the temporal organization of replication initiation in a higher eukaryote. Perhaps most
important, the model can be generalized in a straightforward way to describe replication
and extract relevant parameters in essentially any organism.

4.5 Appendix

4.5.1 Monte Carlo simulations

We wrote a Monte Carlo simulation using the programming language of Igor Pro [74]
to test various experimental effects that were difficult to model analytically. As we dis-
cussed in Ch. 3, these included the effects of finite sampling of DNA fragments (on
average, 190 molecules per time point), the finite optical resolution of the scanned im-
ages, and – most important – the effect of the finite size of the combed DNA fragments.
The size of each molecular fragment in the simulation was drawn randomly from an
estimate of the actual size distribution of the experimental data (Fig. 4.8). This distri-
bution was approximately log-normal, with an average length of 102 kb and a standard
deviation of 75 kb.

We used both the lattice model and a variation of the double-list algorithm for our
simulations (see Ch. 2). The timestep∆t = 0.2 min, and the lattice sizev∆t = 123
bp for the measured fork velocityv = 615 bp/min. The lattice scale is then roughly
the size of origin recognition complex proteins. We sampled the simulation results at
the same time points as the actual experiments (τi = 25, 29, 32, 35, 39, 45 minutes).
Each sampled molecule is cut at random site to simulate the combing process. The
lattice is then “coarse grained” by averaging over approximately four pixels. The coarse
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Figure 4.8: Distribution of combed DNA molecules used in the analysis: the average
length was 102 kb and the standard deviation 75 kb. The distribution is approximately
log normal.

lattice length scale is then 0.24µm, which roughly corresponds to the resolution of the
scanned optical images. Finally, the coarse-grained fragments were analyzed to compile
statistics concerning replicon sizes, eye-to-eye sizes, etc. that were directly compared
to experimental data.

We also used the simulation to test a previous algorithm for extractingI(f), the
initiation rate as a function of overall replication fraction. The previous algorithm [44,
120] looked for small replicated regions and extrapolated back to an assumed initiation
time. The effects of eye coalescence is not taken into account. We tested this algorithm
using our Monte Carlo analysis and, as expected, found significant bias in the inferred
I(f), while the algorithms we introduce here showed no such bias.

4.5.2 Parameter extraction from data and experimental limitations

We extracted data from both the real experiments and the Monte Carlo simulations by a
global least-squares fit that took into account simultaneously the different data collected
(ı.e., the different curves in Figs. 4.2 and 4.3). As discussed above, we fit a two-segment
straight line to theI(t) curve extracted directly from the data for analytic simplicity.
Assuming this form forI(t), we derive explicit formulae for the curves in Figs. 4.2 and
4.3.

The finite size of the molecular fragments studied (102 ± 75 kb; Fig. 4.8) causes
systematic deviation from the “infinite-length” formulae. Such deviations could be de-
tected using the Monte Carlo simulations by comparing the extracted values of param-
eters with those input. The deviations show themselves mainly in two settings: First,
whenever the mean length of holes, eyes, or eye-to-eye distances approaches the mean
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segment length, the observed mean lengths will be systematically too small because the
larger end of the experimental distributions is cut off by the finite fragment length. We
dealt with this complication by restricting our fit to areas where the mean length being
measured is less than 10% of the mean fragment size. The second complication is that
the inferred fork velocity is systematically reduced (by about 5% for the fragment size
in the experiments analyzed here). We measured this bias using the Monte Carlo sim-
ulations and then corrected the “raw” fork velocity that is given by our least-squares
fits. Fortunately, these corrections are expected to be minor because the data we used
satisfies the conditionβ & 10. For further details, see Sec. 3.2.3.

One further subtle point in a global fit is the relative weighting to be given to the
data in theρ(f) curves (Fig. 4.2) relative to the data in the mean-value curves (Fig. 4.3).
We estimated the weights using the boot-strap method [72]. The basic idea is to create
M sets of data by randomly drawing data points from the original set. In other words,
each created data set will consist of the same number of data points as the original one,
but it now has a random fraction of the original points, typically∼ 1/e ≈ 37%. One
then analyzes the artificial data sets as data fromM independent experiments. In a
similar spirit, we used repeated Monte Carlo simulations to estimate statistical errors in
experimentally extracted quantities, ı.e., we used our simulation to create an artificial
data on which we repeated our analysis and extracted nucleation rates, fork velocities,
etc. Repeating this over a number of runs (typically a few hundred), we could estimate
the standard deviations in the various parameters.
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Chapter 5

Spatial Program of Xenopus
Early-Embryo DNA Replication

5.1 Introduction

In the previous chapters, we have focused on extracting the temporal programI(t) of
DNA replication from data. This is a “mean field” view of DNA replication, because a
spatially homogeneous nucleation rate means that any site along the genome is equally
capable of initiating replication and that initiation of one origin does not affect initiation
of another. In real biological systems, however, knowingI(t) only is not enough to
describe the kinetics of DNA replication. Several extreme examples include prokaryotes
such asE. coli, simple eukaryotes such asS. cerevisiae, and somatic cells. In all these,
genome sequence plays an important role in defining origins of DNA replication [118];
thus, absolute positionx along the genome of replication origins are pre-specified. Also,
in S. cerevisiae, replication origins have different efficiencies, and an early-firing origin
can inhibit initiation of its neighboring origins (passive replication) [102, 103].

Even for the organisms where origins are not associated with sequence, such as
XenopusandDrosophilaearly embryos [34, 35], potential origins cannot be distributed
randomly along the genome (see the origin-spacing problem in Sec. 4.3.5). Otherwise,
one expects a geometric (exponential) distribution of separations. Because the length of
S phase is determined by the replication of the entire genome, even relatively rare long
gaps could prolong S phase beyond its observed duration of 10-20 minutes for complete
duplication of the whole genome (> 6 billion bases) [34, 36]. The problem is all the
more acute in that early embryo cells lack an efficient S/M checkpoint [37], which is
used by many eukaryotic cells to delay entry into mitosis in the presence of unreplicated
DNA. This problem is formally stated as the “random-completion problem” [117] and,
for the reasons explained above, its solution requires not only a temporal program of
replication but also aspatialprogram that regulates origin spacing.

Roughly, two approaches have been advanced to resolve the random-completion
problem (see Fig. 5.1) [35]: In the first scenario (the “origin redundancy” model), po-
tential origins exist in abundance and initiate stochastically throughout S phase. This al-

59
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(a) Random-completion problem (b) Origin-redundancy model (c) Fixed-spacing model

Potential origins

Figure 5.1: Random-completion problem and two suggested solutions. (a) Random-
completion problem: if origins are distributed randomly, their separations will follow
an exponential distribution, implying large gaps that cannot be replicated in the time
allotted to S phase. (b) Origin-redundancy model. (c) Fixed-spacing model.

.

lows large gaps to be “filled in” during the later stages of S phase [45, 79]. In the second
scenario (“fixed spacing” model), one postulates a mechanism that imposes regularity in
the distribution of potential origins, thus preventing the formation of problematic large
gaps between origins [24]. In this chapter, we shall show that consideration of Herricket
al.’s experimental results on early embryoXenopusreplication leads to a more nuanced,
“intermediate” view that incorporates elements of both scenarios and, more important,
suggests a biological picture in which the secondary structure of chromatin – looping in
particular – plays an important biological role in DNA replication.

In this chapter, we show that the molecular-combing data on DNA replication in
early-embryoXenopus laevisare most naturally explained by postulating that chromatin
forms loops at “replication factories” [121, 122] and that these loops control origin
spacing (“replication factory and loop” model; see Fig. 5.2 and also Fig. 1.6).1 It is
important to note that the size of such a loop is not arbitrary. The stiffness of the polymer
means that loops that are too small cost too much energy, while loops that are too large
have too many conformations to explore for the ends to meet and, thus, cost too much
entropy. Balancing these effects gives an optimal loop size, calculated correctly by
Shimada and Yamakawa (SY)2 in 1984 [123, 124], which leads to an origin-exclusion
zone, since origins are connected by at least a single loop.

The sizes of the postulated loops extracted by fitting to experimental data turn out
to be comparable to those obtained independently in single-molecule measurements of
chromatin stiffness in other systems [125, 126]. Because the size of a polymer loop
is controlled by its stiffness, we can link the physical properties of chromatin, when
considered as a semiflexible polymer, to origin spacing during DNA replication. As we
shall see, the physical properties of chromatin loops can explain both the observed reg-
ularity of initiation spacings [24] and the existence of an “origin-exclusion zone” [79],
where origin firing is inhibited, reconciling apparently contradictory views on the nature
of the mechanism that ensure rapid and complete genome replication in early embryos.
Although our results concern one particular system, there is reason to suspect that they

1The reader should not take the particular illustration of chromatin folding in Fig. 5.2 literally. In
other words, we do not assume any particular (internal) structure of chromatin, ı.e., our interpretation of
chromatin is that it is a polymer, which has an intrinsic stiffness and, thus, there exists a specific length,
where loop-formation probability is maximum (see text).

2Detailed physics of single-loop formation, from statics to dynamics, including the Shimada-
Yamakawa distribution, will be explored in the next chapter.
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Figure 1

Figure 5.2: Replication factory and chromatin loops. Schematic description of how
chromatin folding can lead to replication factory with loops. The loop sizes are not
arbitrary (see text).

.

may apply more generally.

5.2 Results

In Ch. 4, we drew on basic observations of DNA replication:

1. DNA is organized into a sequential series of replication units, or replicons, each
of which contains a single origin of replication.

2. Each origin is activated not more than once during the cell-division cycle.

3. DNA synthesis propagates at replication forks bidirectionally from each origin.

4. DNA synthesis stops when two newly replicated regions of DNA meet.

We used these observations to construct a “kinetic model” of DNA replication based on
three assumptions:

1. The initiation of origins could be described by a functionI(x, t) that gives the
probability of initiating an origin at positionx along the genome at timet during
S phase.

2. Replicating domains expand symmetrically with a velocityv.

3. Replicating domains that impinge on each other coalesce.

We then used the mathematical model defined by these assumptions (cf., Ch. 2
and 3) to analyze data from the recent experiment on DNA replication by Herricket
al. [44]. In this experiment, cell-free early-embryoXenopuswas dual-labelled with two
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fluorescent dyes. The first was present at the beginning of the replication cycle; the sec-
ond was added at a controllable time point during S phase. DNA fragments were then
isolated and combed onto substrates, where they were analyzed by two-color epifluo-
rescence microscopy. The alternating patterns of labelling then gave a “snapshot” of the
state of the DNA fragment at the time the second label was added. Statistical analysis
of such labels gave empirical distributions of replicated domain (“eye”) lengths, “hole”
sizes between replicated lengths, and “eye-to-eye” distances, defined as the distance
between the center of one eye and the center of a neighboring eye. From the averages
of eyes, holes, and eye-to-eye lengths, we inferred the spatially averaged initiation rate
I(t), the temporal program of DNA replication, which is defined as the number of new
initiations per unit time per unit unreplicated length, at timet.

Although the previous analysis successfully incorporated information deduced from
the averages of the various distributions (ρh, ρi, andρi2i), we did not look at the dis-
tributions themselves. In particular, the eye-to-eye distribution is an important quantity
in that it approximates the origin-spacing distribution for small eye-to-eye distances be-
cause both eyes involved must also be small and thus likely contain just one origin each.
Here, we show that analysis of these quantities including neighborhood eye-size corre-
lations lead us to refine the assumptions made in the kinetic model, shedding light on
the long-standing random-completion problem in the process.

5.2.1 The eye-to-eye distribution predicted using random initiation
does not agree with experiment.

We extracted the distribution,ρi2i, of distances separating centers of neighboring eyes
(eye-to-eye distances) from the raw experimental data that were also used for analysis in
Ch. 4, and compared it with theρi2i distribution obtained from a numerical simulation
that assumed random distribution and activation of replication origins (data compiled
from 6,300 runs of the simulation described in Appendix in Ch. 4) [Fig. 5.3(a)].

The difference between the distributions,∆ρi2i = ρi2i_exp − ρi2i_random, is shown
in Fig. 5.3(b). Notice that there are two clearly distinct regimes. In the first regime
(`i2i .20 kb), the experimental data clearly differ from the simulation (P = 4× 10−33;
χ2 = 165 for n = 6 degrees of freedom). Initiations are inhibited over origin-to-origin
distances smaller than 8 kb (mostly smaller than 4-5 kb). This is consistent with both
the observation that there is only one origin initiation event on plasmids smaller than
∼10 kb [36] and the speculation that an exclusion zone ensures a minimum origin-to-
origin distance [79]. On the other hand, activation of one origin appears to stimulate
the activation of neighboring origins each separated by a distance of 8-16 kb (peak at
∼13 kb). This number is consistent with the previously reported origin spacings of 5-
15 kb [24, 44] and the saturation density ofXenopusOrigin Recognition Complexes
(XORCs) [83, 119] along sperm chromatin in egg extracts.

The second regime (`i2i & 20 kb) shows that for simulation and experiment the
distribution of large eye-to-eye distances is statistically similar (P=0.14;χ2=34 forn =
26), which implies that the random-initiation hypothesis holds for this regime, even as
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Figure 5.3: Distribution of replication ori-
gins and the loop-formation probability.
Because the shape of the eye-to-eye distri-
bution changes little during most of S phase,
we pooled the experimental and simulation
data for f = 10 − 90%, wheref is the
fraction of the genome that has been repli-
cated. (a) Eye-to-eye distributionρi2i. (©)
Experiment; (�) Random initiation (sim-
ulation). (b) Difference between the ex-
periment and assumed random initiations,
∆ρi2i = ρi2i_exp − ρi2i_random. In the en-
hancement region (shaded blue above the
zero line), more initiations occur than in the
random case; in the exclusion zone (shaded
red below the zero line), new initiations are
inhibited. One can see that the first two
oscillations (̀ i2i ≤ 20 kb) are statistically
significant, while the agreement between
ρi2i_exp and ρi2i_random becomes better as
`i2i increases. (c) Experimentalρi2i and the
Shimada-Yamakawa loop-formation prob-
ability. The dotted curve is a fit to the
Shimada-Yamakawa approximate distribu-
tion, Eq. 6.8, over the range 0-35 kb. The fit
gives`p = 3.2±0.1 kb. The fit value of per-
sistence length is biased downwards slightly
because the SY distribution becomes inac-
curate beyond a few times the persistence
length [127]. The curve with triangles (N)
is the result of a simulation incorporating
loops of`p = 3.2 kb, as discussed in the text.
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it fails at smaller origin separations.3

5.2.2 Eye-size correlations and origin synchrony.

We can detect origin synchrony through correlations in the sizes of nearby replicated
domains (or eye sizes). Adjacent (small) eyes of similar size will have initiated at about
the same time. Thus, we tested for the presence of correlations between the sizes of
nearby eyes. The correlation coefficient is defined as

C(|i− j|) =
〈(si − 〈si〉)(sj − 〈sj〉)〉√
〈(si − 〈si〉)2〉〈(sj − 〈sj〉)2〉

, (5.1)

wheresi(sj) is thei-th (j-th) eye size and brackets (〈. . .〉) denote average values. The
neighborhood distance|i − j| indicates how far two eyes are apart. For example,C(1)
is the correlation coefficient for nearest neighbors,C(2) for next-nearest, and so on.
Fig 5.4 shows that there is a weak but statistically significant positive correlation: larger
eyes tend to have larger neighbors, and vice versa. Because domains grow at con-
stant velocity, size correlations may be interpreted as origin synchrony. The value for
the nearest-neighbor correlation,C(1), is consistent with that reported by Blowet al.
(0.16) [24].

The observation of eye-size correlations has qualitative significance in that no local
initiation functionI(x, t) – whatever its form – can produce correlations (see Sec. 2.2.4).
Intuitively, the presence of eye-size correlations means that the probability of initiating
an origin is enhanced by the presence of nearby active origins and thus cannot be a
function only of x and t (position along the genome and time during S phase). In
Fig. 5.4, we calculate via Monte-Carlo simulation the eye-size correlations assuming
that origins are placed at random along the genome (�) and intiations are independent
from one another. As expected, the correlations are consistent with zero.

5.2.3 Origin spacing, loops, and replication factories.

Since the experimental eye-to-eye distribution is not consistent with the random-initiation
hypothesis for short distances (< 20 kb) and since eye-size correlations imply some kind
of nonlocal interaction between origins, we tested an alternative hypothesis, that chro-
matin folding can lead to a replication factory with loops [105, 121, 122], against data.
In the replication-factory-and-loop model, initiations occur at the replication factory,
and there must be a correlation between the loop sizes and the distances between repli-
cation origins. As mentioned earlier, because of the intrinsic stiffness of chromatin,

3The agreement between the two curves (experiment and random initiation) becomes better as the
eye-to-eye distance increases. However, we note that theP -value for the two regimes (inhibition and
enhancement) are most distinguishable when they are divided after the first two oscillations, ı.e., at around
`i2i = 20 kb. On the other hand, we also note that the simple random-initiation hypothesis reproduces all
mean quantities such as the mean eye size throughout S phase very well, as shown in Ref. [45].
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Figure 5.4: Eye-size correlation. Eye-size correlationC|i−j| vs. neighborhood distance
|i− j| between eyes for three different cases (data forf = 40− 60% pooled together):
Experiment (©), random initiation (�) [45], and replication factory and loop model
with loop-formation (N) (each data set compiled from 400 runs of the simulation). The
random-initiation case does not produce any correlations, as expected; however, both
experiment and the replication-factory/loop-formation model produce statistically sim-
ilar positive correlations.

loops have a preferred size: activated origins will tend to occur at a characteristic sepa-
ration from the replication forks of already activated replication origins.

To study the effect of adding chromatin loops to our model, we modified the Monte-
Carlo simulations in Ch. 4 in a number of ways. We accounted for the size of origin
proteins in pre-RC (∼ 10 nm; see Fig. 4.6) by using a lattice size∆x = 116 basepairs
(bp), which is fixed by setting the timestep of the simulation∆t = 0.2 minutes (∆x =
v · ∆t, where the fork velocityv = 580 bp/min) [45]. The parameters used in the
simulation, such as the number and size of combed molecules, are the same as in the
experiment, which justifies a direct comparison between the two.

The simulation consists of three stages: origin “licensing,” “S phase,” and “molecu-
lar combing.” In the licensing stage, potential origins are distributed along each molecule
(or lattice site). In the random-initiation scenario, the potential-origin sites are chosen at
random from the unreplicated domains of DNA. In the loop-formation scenario explored
here, they are chosen in a way that depends on the positions of the moving replication
forks (see below and also Fig. 5.5).

In the S phase stage, origins fire and forks grow bidirectionally, as in previous simu-
lations for the random-initiation scenario. In the modified simulation incorporating the
replication-factory model, there are multiple chromatin loops around each factory. Each
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Figure 5.5: Computer simulation rules. Initiation rules for the computer simulations.
(a) Looping + fixed spacing: there are two replication bubbles and two potential ori-
gins (x) 1 and 2. The probability of initiation of each potential origin isp1 = SY (L1)
andp2 = SY (L2), respectively, whereSY (L) is the loop-formation probability (in-
terpolated Shimada-Yamakawa distribution) of chromatin of loop-sizeL. (See Eq. 6.8,
below.) Note thatp2 6= SY (L3) becauseL3 > L2. We first calculatep’s for all potential
origins, and then we normalize the probabilities and initiate∆N(t) potential origins
using standard Monte Carlo procedure. (b) Looping + origin redundancy: initiation
rules are the same as (a). Again, for an activated potential originX, the probability of
initiation isSY (La) notSY (Lb > La).

potential origin has a different probability of initiation depending on how far it is from
the two left and right approaching forks. To calculate the probability of loop formation
for a single loop of sizeL between a potential origin and the closest approaching fork,
we used the following equation:

G0(L/`p) = (L/`p)
− 3

2 · exp

[
− 8

(
`p

L

)2]
, (5.2)

an approximation that interpolates between the SY and Gaussian-chain distributions
(for details, see the next chapter). In Eq. 5.2,G0(L/`p) d(L/`p) is the relative number
of loops whose scaled contour length is between(L/`p) and[(L + dL)/`p]. Note that
the loop-formation probability is a function of the persistence length`p, which is the
length scale below which (above which) a polymer can be considered stiff (flexible),
and that, in the SY calculations, the distribution of loop sizes is peaked at 3-4 times
`p. For theXenopuschromatin, the persistence length has not been measured under the
conditions applying to the present experiment. We fit the SY distribution (Eq. 6.8) to the
eye-to-eye distribution to obtain an estimate of the persistence length`p [123]. We used
the value from the fit (3.2 kb) in simulations incorporating the effects of loops. Then we
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determined how many origins to initiate, according to the experimentally determined
initiation rateI(t) [45]. In each time step∆t, the number of initiations is∆N(t) =
I(t) · ∆t · L′, whereL is the length of DNA that is unreplicated at timet, and the
frequency of initiationI(t) is the number of initiations per unit time per unit length,
averaged over the genome. Once the probability of initiation for each potential origin
and the∆N(t) are determined, the corresponding number of potential origins is chosen
for initiation by standard Monte-Carlo procedure (Fig. 5.5). In our computer program,
we recorded only the positions of the forks themselves, rather than the state of every
lattice site; this allowed us to carry out lengthy simulations (400-6300 runs; 20-200 Mb
of DNA simulated in each run) using an ordinary desktop computer. (See Sec. 2.3 for
more details.)

In the final molecular-combing stage, we cut the molecules into fragments whose
size distribution matches that of the actual experiment (roughly log-normal, with an
average of 102 kb). We then coarse-grained the simulated molecules by averaging over
a length scale of 480 bp (≈ 0.24µm) in order to account for the optical resolution of
the experimental scanned images of combed molecules.

The final result is a simulation of the experimental data set that includes the differ-
ent biological scenarios of interest, in this case chromatin loop-formation. We applied
exactly the same data analysis to the simulated data set as we did to the experimental
data set.

The results of our modified simulations are shown in Figs. 5.3(c) and 5.4 (data com-
piled from 400 runs of the simulation), which shows that incorporating the replication-
factory-and-loop model into the initiation algorithm makes theρi2i data from the sim-
ulation agree with experiment. In Fig. 5.4, the simulation data (N) show eye-size cor-
relations more consistent with experiment: this is an expected result since using the
SY distribution as a relative initiation probability of potential origins from approaching
forks implicitly enforces clustering and rough synchrony of origin firings. In Fig. 5.3(c),
we plot both the SY and the measuredρi2i distributions (dotted and triangular curves,
respectively). Note that the SY distribution itself should only approximateρi2i for the
following reasons: The SY distribution gives the probability that the ends of a polymer
meet, while theρi2i distribution gives the probability that two points along the DNA
meet. Unlike the SY distribution, which considers a finite segment of polymer that can
form a loop only if the two ends meet, these multiple points are constrained to be dis-
crete loci along the DNA wherever there are potential origins. In addition, if a long
loop containing additional potential origins forms, multiple loops may be created by
subsequent binding of one of the potential-origin sites interior to the original loop. Such
possibilities are not considered in the SY distribution. Still, for small loop sizes, nei-
ther of these effects is important because the high bending-energy cost inhibits subloop
formation in loops that are already small, and we may compare the SY andρi2i distri-
butions in this regime. The fit to the distribution result, in Fig. 5.3 (dotted curve), is
reasonably consistent with the data over the fit range (0-35 kb) and gives a persistence
length of 3.2± 0.1 kb. This persistence length was then used for the simulation data
(triangles in Fig. 5.3(c) and blue points in Fig. 5.4). The optimal loop size is then∼11
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kb [peak of curves in Fig. 5.3(c)], and the exclusion zone is approximately one per-
sistence length,∼3-4 kb. These values are in excellent agreement with the observed
average XORC saturation density, 7-16 kb along theXenopussperm chromatin in egg
extracts [83, 119], the known values of origin-spacings of 5-15 kb [24, 44] and loop-
sizes [116] of early embryoXenopus, as well as the average origin-spacing 7.9 kb of
transcriptionally quiescentDrosophilaearly embryos [80].

5.3 Discussion

5.3.1 Persistence length

The persistence length that we infer forXenopussperm chromatin fiber in egg extracts
(3.2± 0.1 kb) is comparable to that found in other systems. Cui and Bustamante mea-
sured the persistence length of chromatin fibers under low-salt and in physiological
conditions using force-extension curves obtained by stretching single chicken erythro-
cyte chromatin fibers [126]. They found̀p = 30 nm, which corresponds to 3.5 kb for
a typical packing ratio of 40 [127], slightly larger than our value. On the other hand,
Dekkeret al. [125] used their “Chromosome Conformation Capture” (3C) technique to
estimatè p for chromosome III in yeast in the G1 phase of its cell cycle. They found`p

= 2.5 kb, slightly smaller than our value. Although these measurements are for different
systems, their similarity suggests that chromatin stiffness may typically be in this range
and, also, that the looping scenario examined here may apply more generally.

5.3.2 The random-completion problem: part II

As mentioned in the Introduction and in Sec. 4.3.5, because replication origins in em-
bryos are not linked to sequence, the relevant model of DNA replication must be able
to address the random-completion problem, ı.e., it must be able to account for both the
observed duration of S phase and the relative infrequency of long “fluctuations” of the
time to copy the genome. The two scenarios discussed above – “origin redundancy”
and “fixed spacing” – have issues of concern. One problem with the origin-redundancy
scenario is that, until recently, potential origins were believed to be directly associated
with XORCs by assembly of pre-replication complexes (pre-RCs) consisting of sev-
eral proteins (XORC, CDC6, CDT1 and MCM2-7) before the start of S phase (“origin
licensing”; see also Fig. 4.6) [34, 35, 118]. The potential origins are then activated dur-
ing S phase. The difficulty is that there are approximately the same number of XORCs
as initiated origins. Recent data by Edwardset al. [128], however, suggest that all the
MCM2-7 complexes, 10-40 of which are recruited by each XORC, may be competent to
initiate replication and that the choice of MCM complex is not made before the start of
S phase, implying that a much greater fraction of the genome serves as potential-origin
sites. (More recently, Harvey and Newport [129] have shown that, indeed, replication
initiation sites are coincident with MCM but not ORC, where binding of MCM com-
plexes create an “initiation zone” of size larger than 2 kb.) Edwardset al. then showed
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that CDC45, which is essential for initiating replication at MCM complexes (Fig. 4.6),
is limiting for DNA replication, and, based on this observation, they further speculated
that activation of the first MCM complexes may lead to inactivation of neighboring
MCM complexes, thereby restricting initiation to defined intervals. Even so, restricting
initiation itself does not prevent the formation of large gaps between origins, nor does it
explain the significant eye-size correlations, ı.e., partial synchrony in origin firings. In
other words, one still needs a structural basis for regulation of origin spacing and origin
synchrony.

The problem with the other scenario (fixed spacing) is its fragility: If even one origin
fails to fire, the length of S phase would increase significantly (at least of order 10 min-
utes for approximate XORC spacing 10 kb and fork velocity 600 bp/min) [35]. Thus,
this fixed-spacing scenario requires an unknown mechanism to ensure very high effi-
ciency of origin initiation to prevent two or more nearest-neighbor origins from failing
to initiate.

The replication-factory-and-loop model considered here incorporates elements of
both scenarios. Like the origin-redundancy scenario, it is based on the measured, in-
creasingI(t). But the looping accounts naturally for the origin-exclusion zone, as well
as the observation that individual origins may be more closely spaced than the typi-
cal exclusion-zone size. Like the fixed-spacing scenario, there is also regularity in the
origin spacing. Note that, here, regularity appears as a natural consequence of the stiff-
ness of chromatin, and no other mechanism is required. Both the redundant origins and
the regularity contribute to making the failure to replicate the entire genome within the
common duration of S phase unlikely.

In our case, we tested the replication-factory-and-loop model with various con-
straints on the distribution of potential-origin sites using computer simulations. The
results shown here assumed an average potential-origin spacing of 7 kb, randomly dis-
tributed on a DNA molecule fragment whose length is approximately 500-1000 kb
before being cut. The numbers reflect previously reported values for XORC spac-
ings [83, 119] and the average origin spacing [24, 44]. The small size of the DNA frag-
ments also prevents large gaps between origins, thus avoiding the random-completion
problem. On the other hand, the assumption that MCM complexes completely cover
the genome and all are competent for initiation also produced a result that is similar to
the one presented here when looping (and the implicit synchrony rule) is incorporated
in regulating initiation. At this point, the statistics available in the data of Herricket
al. [44] and the lack of theoretical understanding of chromatin behavior make it difficult
to invert the data to draw conclusions about the form of the potential origin-site distri-
bution. However, the wide range of potential origin distributions considered above gave
results consistent with an important biological role for chromatin looping.

We emphasize that the replication-factory-and-loop model not only gives a better
quantitative explanation of theρi2i distributions, it also provides a basis for the corre-
lations between neighboring eye sizes. Although the increase in initiation rate during
S phase [44, 45, 79] can explain the observed duration of genome replication, it can-
not give rise to correlations on its own. Some mechanism wherein the initiation of one
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origin has effects on the likelihood of nearby initiations is required. The detailed analy-
sis of the experimental data presented here shows that inhibition near activated origins,
coupled with enhancement at a characteristic farther distance, is required. We argue that
loops are the simplest, most natural mechanism that can satisfy these requirements.

5.3.3 Chromatin loops and replication kinetics.

Our findings imply that higher-order chromatin structure may be tightly linked to the
kinetics of DNA replication in the early-embryoXenopus laevis in-vitrosystem. We
note that looping is a well-established way for DNA-bound proteins to interact over
long distances [130]. At scales of hundreds of bases, it plays an important role in gene
regulation. For example, the looping of dsDNA (`p=150 bp) with intrinsic curvature fa-
cilitates greatly the interaction between regulatory proteins at upstream elements and the
promoter [131]. Loops are also known to appear in higher-order chromatin structures,
such as the 30-nm fiber, at scales of thousands of bases or even longer [132]. For exam-
ple, Buonguorno-Nardelliet al. [116] established a correlation between chromosomal
loop sizes and the size of replicated domains emanating from a single replication origin
(replicon). Chromatin loops are also an essential part of the replication-factory-and-
loop model of DNA replication, where polymerases and their associated proteins are
localized in discrete foci, with chromosomes bound to the factory complex at multiple
nearby points along the genome [121, 122].

The natural follow-up to the results presented here would be to assess the generality
of our results: Do they extend to other early-embryo systems? Are they validin vivo?
Do they apply to other transcriptionally quiescent regions of the genome?

Based on our results, we can also predict how altering chromatin structure should af-
fect DNA replication. For example, if the replication-factory-and-loop model is correct,
the loop size is roughly the origin spacing. Since the optimal loop size is proportional to
`p, the duration of S phase increases with`p in a way that can be modeled quantitatively
using the simulation. One experimental approach to testing these ideas would be to
combine combing and single-molecule elasticity experiments (e.g., [126]) onXenopus,
isolating DNA from different regions of the genome. If there is heterogeneity in the
stiffness of chromatin fibers in the genome, we would predict a corresponding hetero-
geneity in the origin-spacing distribution.

5.3.4 Loop formation and replication factories.

Currently, there are no direct experimental observations of the internal structure of repli-
cation factories. For example, the number of replicons or loops per individual factories
or foci is only estimated indirectly from various quantities such as total number of ori-
gins, number of foci, fork velocities, and rough origin spacing. However, replication
foci appear to be universal features of eukaryotic DNA replication and nuclear structure
(e.g., Fig. 1.6). In mammalian cells, they are globally stable structures, with constant
dimensions, that persist during all cell cycle stages, including mitosis (for a review see
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Ref. [105]). On the other hand, experimental evidence suggests that chromatin is very
dynamic within individual foci at the molecular level (see, for example, Ref. [133]),
consistent with our computer simulations.

In Fig. 5.2, a schematic diagram shows how chromatin folding can lead to a repli-
cation factory with loops (see also footnote 1). Once loops form, they can dynamically
fluctuate locally around factories throughout interphases, with highest mobility during
the G1 phase, while the global structures of foci are stable within the nucleus. We
note that recent theoretical calculations show that such chromatin folding can be very
fast (10−3 − 10−2 sec), and the loop-formation time is inversely proportional to the SY
distribution. In other words, loop-formation is fastest when its size is 3-4 times the per-
sistence length, and it increases exponentially as the loop size becomes smaller than the
persistence length (see Ch. 6), leading us to further speculate that the origin-spacing in
Xenopusor Drosophilaearly embryos may be selected to maximize the loop-formation
and contact rate of origins.

On the other hand, the exact physical mechanisms of initiation and its partial syn-
chrony within individual replication factory remain for future experiments. For exam-
ple, although the eye-size correlation in our simulation decreases monotonically, the
experimental data do not rule out the possibility of non-monotonic decay. Also, the
correlations from both simulation and experiment are significant but weak. This sug-
gests that the synchrony within a replication factory is not perfect, and nearest neighbor
origins do not necessarily fire simultaneously [105].

Regardless of the biological complexity in replication foci, however, we emphasize
that the loop sizes are determined by the basic physical principles explained above,
namely, the balance between chromatin energy and entropy.

5.4 Conclusion

In Xenopusearly embryos, replication origins do not require any specific DNA se-
quences nor is there an efficient S/M checkpoint, even though the whole genome (3
billion bases) is completely duplicated within 10-20 minutes. This leads to the random-
completion problem of DNA replication in embryos, where one needs to find a mech-
anism that ensures complete, faithful, timely reproduction of the genome without any
sequence dependence of replication origins.

The results presented here provide strong evidence that a combination of redundant
origins and chromatin loops together provide such a mechanism. We find that the per-
sistence length of chromatin loops plays a biological role in DNA replication, in that it
determines the optimal distances between replication origins inXenopusearly embryos.
Chromatin loops constitute a structural basis for the observed distribution of replication
origins inXenopusearly embryos, accounting for both origin exclusion zones and ori-
gin clustering along the genome. It would also be interesting to see whether the same
scenario applies to other early-embryo systems such asDrosophila.

The picture of the replication process presented here also leads naturally to more de-
tailed hypotheses about the role of chromatin, which should stimulate further modeling
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efforts.
Finally, it would be highly desirable to vary the persistence length of chromatin, to

see whether the origin spacings change in a way predicted by our theory. Although such
an experiment poses formidable challenges, it would be an important step forward in
understanding the role of chromatin structure in DNA replication.



Chapter 6

Looping of Semiflexible Polymers:
from Statics to Dynamics

6.1 Introduction

In Ch. 5, we have used the equilibrium loop-formation probability and the replication-
factory-and-loop model to explain the eye-to-eye distribution during replication inXeno-
pusearly embryos. One crucial assumption was that the timescale of chromatin dynam-
ics, such as the loop-formation timeτc, is much smaller than the typical timescale of
Xenopusearly-embryo DNA replication (10-20 minutes). Otherwise, our use of the
equilibrium loop-size distribution cannot be justified. Motivated by this question of
timescales, we study in this chapter a simplified version of the problem, namely, loop
formation of a single chain with two “sticky” ends. As we show below, one can ob-
tain a simple analytical expression to estimate the approximateτc of biopolymers using
the Kramers theory and, indeed,τc for chromatin at the length scale relevant to DNA
replication is10−2 − 10−3 seconds, much smaller than the duration of S phase.

Indeed, polymer looping is ubiquitous in biological systems. The ability of a biopoly-
mer to form a loop (in response to a cellular signal) is crucial for living cells to sur-
vive [38]. Polymer looping allows contact and chemical reaction between chain seg-
ments that would otherwise be too distant to interact. In gene regulation, looping allows
a DNA-bound protein to interact with a distant target site on the DNA, greatly multi-
plying enzyme reaction rates [127, 130]. In protein folding, two distant residues start to
come into contact via looping [134, 135]. On a more practical side, measurements of
loop formation in single-stranded DNA segments with complementary ends have also
been used to extract elasticity information (e.g., the sequence-dependent stiffness of
single-stranded DNA [136]).

Biopolymers constantly change their conformation (ı.e., their shape) in response
to thermal fluctuations or even weak perturbations. They are occasionally referred to
as “shape-shifting” molecules [10]. Because they are flexible at large length scales,
many of their global properties are well-characterized by flexible-chain models (e.g.,
the Gaussian chain model) [137, 138]. On the other hand, at short, biologically relevant

73
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length scales, biopolymers are stiff. Thus, one expects that a complete description of
them will involve the notion of a semiflexible chain, ı.e., one that is stiff below a given
length scale (the “persistence length”) and flexible beyond it.

Unlike flexible chains, semiflexible chains are not allowed to bend sharply, and they
are locally inextensible. The origin of the local inextensibility is that the compression
modulusE and the bending modulusκ of elastic rod of radiusA are proportional to
Y ·A2 andY ·A4, respectively [139]. In other words, because of the stronger dependence
of κ on the rod diameter, it is much easier to bend a thin filament than to stretch it [140].
From a mathematical point of view, this local inextensibility is very difficult to imple-
ment in analytical theories, and only a few properties of a semiflexible chain are well-
understood. For example, an exact closed-form expression for the average end-to-end
distance of an ideal semiflexible chain has been obtained as a function of chain stiffness,
while other quantities of more practical interest such as the end-to-end distribution still
elude analysis. Imposing any extra constraints, such as a fixed end-to-end distance (cf.
Eq. 6.6, below), can dramatically complicate the calculations. Accordingly, a number of
approximation schemes have been entertained (see [141, 142] and references therein).
Chief among these are mean-field-type approximations, which amount to replacing the
local inextensibility constraint by a global one. In the resulting picture, the constraint is
enforced only on average. This model has been used extensively in describing both the
statical and dynamical properties of a linear stiff chain [141–145].

In contrast to the case of flexible chains, much less progress has been made in de-
scribing the loop formation of a stiff chain. To date, there does not even exist a general
theoretical approach to polymer loops in equilibrium that shows a crossover from the
stiff- to flexible-chain limit. While the earlier work of Shimada and Yamakawa (SY)
accurately describes an equilibrium ring-closure probabilityG0 (the probability that the
two ends meet) of a rather stiff chain, it becomes less accurate in the flexible-chain limit.

A more general treatment ofG0 by Liverpool and Edwards captures the essential
physics in both the stiff and flexible limits. However, it is quantitatively inaccurate
in the intermediate regimèp ' L, whereG0 does not show simple scaling behav-
ior. Despite its relevance to biology, the looping dynamics of a stiff chain is poorly
understood. Even for the simplest case of an ideally flexible polymer with no hydro-
dynamic effects (ı.e., a Rouse chain [138]), there are two rival theoretical approaches
that lead to contradictory results: Szabo, Schulten, and Schulten (SSS) conclude that
the time to form a loop (the “closing time”τc) should scale for moderately large poly-
mer lengthsL as τ

SSS
∼ L3/2 [146], while Doi, applying Wilemski-Fixmann (WF)

theory [147, 148], findsτ
Doi

∼ L2 [149]. The discrepancy between the two continues
to spur debate [150, 151]. For the important case of stiff chains [152, 153], where the
polymer lengthL is comparable to or smaller than the persistence length`p, extensive
theoretical and numerical studies have only recently been carried out [47, 154–156].
The main difficulty arises from the interplay between two seemingly distinct processes:
chain relaxation and chain closure. This interplay is unique to a polymeric system and
originates from the chain connectivity of a polymer immersed in a noisy environment.

In this chapter, we present simple theoretical models that describe the looping of
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l

r α (reaction radius)

τc

Figure 6.1: Schematic description of looping of a polymer whose reduced contour
length is` = L/`p with two “sticky” ends of diameterα = a/`p, where`p is its persis-
tence length. The end-to-end distance isr = R/`p.

a semiflexible chain. One major simplification is that we consider a finite segment of
polymer with two “sticky” ends (Fig. 6.1), as oppose to the biologically more relevant
case of infinitely long chains that are sticky everywhere (chromatin fibers can bond to
replication factories at any point, as illustrated in Fig. 5.2). Also, we limit our discussion
to ideal chains, ı.e., those in a theta solvent, for which there is no excluded volume
interaction between chain segments. We shall argue that, despite these simplifications,
our calculations capture the basic physics of the looping.

In our calculations, we show how the equilibrium properties of a stiff chain are
reflected in its looping dynamics. To this end, we compare the time scales of chain re-
laxation and chain closing. For stiff chains, the closing timeτc is typically much longer
than the global chain-relaxation timeτ

R
. In this case, a Kramers rate theory [157, 158],

to be developed below, leads to analytical approximations forτc. The main factor gov-
erning the looping in this regime turns out to be the equilibrium ring-closure probability.
An important result is that, if one considers the loop-formation time for polymer chains
of different lengthsL, then there is a minimum forL ≈ 3 − 4`p. Roughly speaking,
looping of shorter chains require too much energy relative to the thermal energykBT ,
while longer chains need to search too many conformations for ends to “find” each other.
We also show that consideration of the requirements for Kramers theory to apply leads
one naturally to identify different regimes governing the closing timeτc. This classifica-
tion shows how the physics of chain relaxation is intertwined with that of chain closing
and clarifies the above-mentioned controversy between the SSS and Doi approaches to
loop-formation dynamics. We also discuss briefly some biological implications of our
results.

6.2 Theoretical Approaches to Modeling Polymers

We first review the overall classification of polymer models, both discrete and continu-
ous. The simplest discrete polymer model is the freely jointed chain (FJC). Fig. 6.2(a)
shows a model FJC as a chain of freely joined vectors of fixed lengthb. The FJC ignores
both monomer interactions and finite chain stiffness and can be thought of as a random



76 CHAPTER 6. LOOPING OF SEMIFLEXIBLE POLYMERS

  

€ 

r 
R 

b

  

€ 

Δ
r r 1

  

€ 

Δ
r r 2

  

€ 

Δ
r r N

  

€ 

Δ
r r 3 € 

θ

  

€ 

Δ
r r N

  

€ 

Δ
r r N−1

  

€ 

Δ
r r N−2

Fig 1

(a) (b)

Figure 6.2: Discrete models of polymer. (a) Freely Jointed Chain (FJC) (b) Freely
rotating chain.

.

walk of a fixed step length, where each step is independent of the previous trajectory.

Usually, the “size” of a polymer chains is defined as
√

~R2, and one can derive a very

simple scaling law
√

~R2 ∝ N1/2 from

〈
~R2
〉

=

〈∑
i

∆~ri ·
∑

j

∆~rj

〉
=
∑

i

〈
∆~r 2

i

〉
+

〈∑
i6=j

∆~ri ·∆~rj

〉
= N b2. (6.1)

WhenN → ∞, the distribution of end-to-end vectors~R is Gaussian. In a variant of
the FJC, beads are separated by freely jointed linear springs, which leads to a Gaussian
distribution of bond lengths. For largeN , the distinction between the FJC and this
“Gaussian-chain” model disappears.

A more realistic discrete model polymer, the freely rotating chain (FRC), is shown
in Fig 6.2(b). The FRC consists of vectors with fixed bond angle but with completely
free dihedral angles, thus naturally incorporating finite stiffness. In the FRC,

〈
~R2
〉

can
be calculated exactly in a straightforward way, and it is easy to show that the FRC also
follows the same scaling law inN as the FJC. Next, we define a quantity called the
“persistence length” as

`p ≡ lim
N→∞

〈
~R ·∆~r0

〉
=

b

1− cos θ
, (6.2)

which is the average length of the projection of the end-to-end vector along the direction
of the first bond vector. As we shall show below, the persistence length is a measure of
chain stiffness.
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The continuum limit of the FRC is the Kratky-Porod (KP) wormlike chain [159].
We define the total contour lengthL = N · b and the contour distances (0 ≤ s ≤ L)
from the zero’th to thei’th vector bys = i · b. We then take the limit,N →∞, b → 0,
andθ → 0, with constraints that the chain lengthL and the persistence length`p remain
constant. The discrete chain contour then becomes a continuous, differentiable space
curve. The statistical properties of the KP wormlike chain are then determined by an
effective free energy quadratic in the curvature∂~u(s)/∂s:

Hb =
κ

2

∫ L

0

[
∂~u(s)

∂s

]2

ds with |~u(s)| = 1, (6.3)

whereκ ≡ `p · kBT is the bending modulus of the polymer, and the unit tangent vector
~u(t) at s on the curve is defined as~u(t) = d~r(s)

ds
, with ~r(s) is the position vector. As we

discussed above, imposing the constraint of fixed polymer length,|~u(s)| = 1, is one of
the major difficulties in handling the model analytically [141, 160].

Several quantities, nonetheless, are known exactly. One of the most important is the
spatial correlation function for unit tangent vectors [138],

〈~u(s) · ~u(s′)〉 = exp

(
−|s− s′|

`p

)
. (6.4)

Using Eq. 6.4, we can also calculate
〈
~R2
〉

exactly,

〈
~R2
〉

=

∫ L

0

∫ L

0

〈~u(s) · ~u(s′)〉 ds ds′ = 2`p L− 2`2
p

(
1− e−L/`p

)
. (6.5)

Eq. 6.5 implies, forL � `p,
〈
~R2
〉

= L2: the rod is rigid. ForL � `p, we have〈
~R2
〉

= 2`pL, which is identical to Eq. 6.1, if we identifyb′ = 2`p andN ′ = L/b′

as effective segment lengths and polymerization indices, respectively. The behavior in
these two limits shows that the KP wormlike chain interpolates between the rigid rod
and the Gaussian chain. Hence, the persistence length`p is a measure of the chain
stiffness in the KP model. One often uses a dimensionless chain length,` = L/`p. We
note that neither the KP nor the lattice models considers the torsional energy of a chain,
which can lead to complications such as supercoiling and knotting [161]. The helical
wormlike (HW) chain model has both bending and torsional energies, and it has been
very successful in applications involving short lengths of DNA. Formally, the HW chain
is obtained from a discrete chain with coupled rotations (the dihedral-angle distributions
are non-uniform) [124].

A quantity of particular interest is the end-to-end distribution function defined as an
ensemble average ofδ

(
~R−

∫ L

0
~u(s)ds

)
:

G(~R; L) =

〈
δ

(
~R−

∫ L

0

~u(s)ds

)〉
. (6.6)
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Unfortunately, the constraint|~u(s)| = 1 makes this integral intractable. One way to
tackle this difficulty is to impose the hard delta-function constraint only on average.
Using this “mean field” approach, Thirumalai and Ha (TH) [141] have obtained an
approximate form forG(r, `) in terms of the reduced parametersr = R/`p and` =
L/`p, as follows:

G(~r, `) = n(`) ·
[
1−

(r

`

)2
]− 9

2

× exp

{
−3`

4

1

[1− (r/`)2]

}
, (6.7)

where the normalization factorn(`) is fixed by requiring
∫ `

0
4πr2G(r, `)dr = 1. (The

other end of a polymer of length̀must be located within a sphere of radius` of the
first end.) Note that a more accurate but more complicated expression recently derived
by Winkler [142] gives essentially the same results. The expression forG in Eq. 6.7
becomes exact as̀→ ∞ but is less accurate for̀p comparable toL (ı.e., ` ' 1).
Although it underestimates the energy cost for tight bending, it is accurate to 10%.

UsingG(r, `), we define the ring-closure probability to beG(~r = 0, `) ≡ G0(`). As
we shall discuss below,G0 measures the difficulty in bringing the two chain ends close
to each other. It will turn out to be a key quantity in the description of loop-formation
dynamics. Note that bothG(r, `) andG0(`) include no constraints on the orientation
of the end-point target vectors. In particular,G0(`) includes “kinked” loops with an
orientation discontinuity between the two ends.

For flexible chains, the ring-closure probabilityG0(`) is analogous to the probability
for a random walk to return to the origin and is given byG0(`) ∼ `−3/2 [124]. We can
understand this scaling, as follows: In this limit, the mean end-to-end distancerg for
an ideal flexible chain scales asrg ∼ `1/2. The volume occupied by the chain is then
given byV ∼ rg

3 ∼ `3/2. The probability to find the two ends atR = 0 is inversely
proportional toV , leading toG0(`) ∼ `−3/2.

For stiff chains (̀ . 1), the first theoretical result forG0(`) was obtained by Shimada
and Yamakawa (SY) about twenty years ago [123]. The basic idea is to start from
a ground-state conformation of a polymer ring and to consider small conformational
fluctuations around it. This leads to

GSY
0 (`) =

(
896.32

`5

)
exp

(
−14.054

`
+ 0.246 `

)
. (6.8)

Note that the1/`-term in the exponent in Eq. 6.8 solely arises from the bending energy,
while the other terms come from chain fluctuations about the lowest-energy conforma-
tion. In other words, the leading term in the exponent (∼ 1/`) is the minimum bending
energy of a stiff rod whose two ends are glued together without restricting the orienta-
tion of the tangents. The preferred angle between the tangents for minimum bending
energy is called the Yamakawa-Stockmayer angle [162] and is roughly82◦. This ex-
plains why the leading term is slightly smaller than the bending energy of a circular
polymer circumferenceL, which isEloop/kBT ≈ 1

2
`pL(2π/L)2 ≈ 19.7/` (Eq. 6.3).

It is worth noting that the expression derived by SY does not cross over to the result
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Figure 6.3: Loop-size distribution for three cases: Shimada-Yamakawa (Eq. 6.8),
Ringrose-Rippe (Eq. 6.9), and Freely Jointed Chain (FJC).

.

for a flexible chain,G0(`) = `−3/2. The reason is that, in the flexible limit, fluctuations
about the ground state become too large to be treated as a perturbation.

Ringroseet al. [163] have given anad hocexpression forG0(`) that is accurate over
the entire range of̀:

GR
0 (`) = `−3/2 · exp

(
− 8

`2

)
. (6.9)

No matter which approximation we use,G0(`) should vary non-monotonically: For
small ` (or L . `p), chain closing (in equilibrium) is energetically discouraged and
hence exponentially suppressed, as implied by Eq. 6.8. On the other hand, equilibrium
looping is mainly determined by the chain entropy in the flexible chain limit` � 1
(Fig. 6.3).

6.3 Relaxation of a Stiff Chain

The previous section concerned equilibrium chain statistics. Here, we describe the pro-
cess of chain equilibration, ı.e., the way a chain configurations approach equilibrium
as time elapses. To this end, we will invoke a simplification that is only qualitatively
valid but, nevertheless, provides much of the information we need to proceed with our
discussion about the looping dynamics.

The dynamics of each monomer depends on and is complicated by other monomers
in the same chain. In what follows, we shall focus on the strong-damping (high-friction)
limit, as it is the relevant case for biomolecules in viscous media (e.g., water). The
essential assumption is that the velocity of each monomerd~r(s, t)/dt equilibrates much
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faster than does its position. To quantify this statement, let us consider two time scales
for a monomer: a velocity-relaxation time (τv) and a diffusion time scale over its own
size b (τ

D
). A particle of massm and friction constantζ (defined bymdv

dt
= −ζv)

in a viscous medium moves like a free particle for the time scalet � τv = m/ζ; for
t � τv, however, its motion becomes diffusive. The high-damping limit pertains as long
asτv � τ

D
≈ b2/D0 or ζ �

√
mkBT/b2, whereD0 = kBT/ζ is the diffusion constant

of each monomer. If we assume a spherical monomer of radiusb and mass densityρ is
immersed in a solvent of viscosityηs, thenζ = 6πηsb andm = 4πb3ρ/3. For a typical
biopolymer, we find thatτ

D
� τv by several orders of magnitude. In this high-damping

limit, the inertia term can thus be dropped.

For the corresponding flexible case, the polymer dynamics can be expressed as the
sum over a number of independently moving modes, known as Rouse modes [137, 138].
The local inextensibility constraint of|~u(s)| = 1, however, complicates the analysis
because it couples the normal modes to each other. To circumvent this difficulty, we
consider a global chain deformation near the rod limit. The characteristic time scale
for this deformation is essentially the global relaxation timeτ

R
(or chain equilibration

time), as the higher-order modes will relax faster than this deformation. The time scale
obtained this way is a reasonable estimate of the relaxation time for the slowest mode,
ı.e., τ

R
. Now the physics near the rod limit is dominated by the bending energyEb

of the chain [164]. Since the lowest energy of bending a linear stiff chain is well-
approximated in terms of a uniform curvature of radiusR, the bending energy in this
case isEb/kBT = 1

2
`pL/R2 ' 2`p(L−R)/L2. The relative position~R of the two ends

of the chain (experiencing a uniform deformation) behaves like a particle subject to a
constant restoring forcefc = 2kBT`p/L

2. Inspired by the dumbbell model for flexible
chains introduced by Kuhn and Péterlin (see Ch. 6 in Ref. [137] and references therein),
which pictures the whole chain as a spring subject to (entropic) elastic force, we can
write a similar equation for a stiff chain

ζtot
~̇R = −fc

~R

R
, (6.10)

whereζtot is a friction constant (see below). From dimensional analysis, Eq. 6.10 leads
to a scaling relation for the characteristic time for stiff-chain deformation (∼ L):

τ ∼ ζtot

fc

L ∼ ζtot

kBT

L3

`p

. (6.11)

If we chooseζtot ∼ N = L/b (additivity of friction for individual monomers), we
get τ ∼ ζ0

kBT
L4

b `p
= 1

D0

L4

b `p
, whereζ0 andD0 are friction and diffusion constants for

individual monomers, respectively. Note that this has the same scaling as the relaxation
times of a stiff chain (e.g., [165]), which is not surprising, since Eq. 6.10 only concerns
the total elongation~R. Also, note thatτ decreases as̀p increases, because~R feels a
stronger restoring force for larger`p, relaxing faster. In principle, hydrodynamic effects
can be included in the analysis; however, they only have a marginal effect on the longest
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relaxation timeτ
R

in the stiff limit. That is,τ
R

is roughly proportional toln N (namely,
logarithmic corrections [138, 166]). Although this result is valid only as long asL .
`p, it clearly suggests that stiff chains equilibrate more efficiently than flexible chains,
whereτ

R
∼ L2/D0. In other words, the dynamics of a stiffer chain is less complicated

by internal modes (degrees of freedom other than the global chain deformation).

6.4 Looping Dynamics

In this section, we will introduce a simple theoretical model for describing the looping
dynamics of a stiff chain. To be specific, we consider a linear chain with two sticky
ends, which become reactive when they are sufficiently close to each other. Clearly,
the looping dynamics is controlled by two distinct rates: the rate at which two ends
are brought close and the rate at which the two ends react. In the diffusion-limited
case, which we mainly focus on, the reaction rate between the two ends is arbitrarily
large: It is assumed that the chain forms a loop as soon as the two ends fall within a
reaction radiusa. This amounts to imposing an absorbing boundary condition on the
(possibly time-dependent) distribution function ofR. The closing time obtained this
way is a first-passage time and, hence, only a lower bound for closing times in more
realistic cases. Our discussion in the previous section implies that polymer dynamics is
in general complicated by the presence of internal modes. As it turns out, the looping
dynamics of a polymer is even trickier to formulate. The main difficulty arises from the
absorbing boundary condition, which is hard to implement and which causes the Rouse
modes for an ideal flexible chains to become coupled to each other, making the looping
problem intractable without approximations.

Our discussion in the previous section implies that the effective potential felt by the
two ends of a chain depends on how the chain relaxes. In other words, the looping dy-
namics can be influenced by chain relaxation. Similarly, chain relaxation can also be
influenced by chain looping. Ifa is sufficiently large, then the chain closes before it re-
laxes. In other words, the processes of relaxation and looping are intertwined. However,
for a sufficiently stiff chain, the closing timeτc can be much longer thanτ

R
, a fact that

can be testeda posteriori. In this case, we can ignore internal modes and project the
looping dynamics onto the one-dimensional reaction coordinateR. Consider a chain of
reduced length̀ ≡ L/`p and end-to-end distancer ≡ R/`p with two ends that react
when first brought within a distancea of each other (“diffusion-limited” loop-formation
dynamics) (Fig. 6.1). We apply Kramers rate theory [157], viewing the process as a
noise-assisted crossing over a potential barrier. In this picture,r is the only dynamic
variable; even though the chain has already relaxed, the two sticky ends in the diffusion
limited case are not allowed to equilibrate in the potential they create. In this regard,
the combined system of the chain and the two sticky ends is said to be in “local equilib-
rium.” After first presenting the straightforward calculation, we then consider carefully
its domain of applicability and give a scaling description of loop formation outside this
domain.

The basic idea is to project the internal degrees of freedom of the polymer chain
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Figure 6.4: (a) The radial distribution densityP (r, ` = 3). The dashed line shows the
effect of a short-range interaction between the two polymer ends. (b) The resulting
effective potential of the chain. Arrows denote the top and bottom of the effective
potential well, as used in the Kramers calculation.

onto a single “reaction coordinate”r and to use the equilibrium distribution function
G(r, `) to construct an approximate “effective potential” between the two ends

U(r, `) = −kBT ln P (r, `), (6.12)

whereP (r, `) ≡ 4πr2G(r, `) is the radial distribution function of reduced end-to-end
distancesr of a polymer of length̀ andG(r, `) ≡ G(|~r` − ~r0|; `), the angle-averaged
distribution function for the end-to-end vector~r = ~r`−~r0. (For justification of Eq. 6.12,
see, for example, [142].) Here we assume isotropic chemical interactions between end
monomers, so that end binding can be modeled by adding toU a smooth short-range
potentialf(r/α), with α ≡ a/`p the scaled interaction range. Generalization to an
anisotropic case is straightforward, but we consider only the isotropic case for simplic-
ity. A typical distribution function and the resulting effective potentials are shown in
Fig. 6.4. Then, in our "single-variable picture,” we postulate that the long-time (t � τ

R
)

dynamics are governed by the effective potentialU(r, `) and that they obey a Fokker-
Planck equation for the time evolution of the distribution ofr:

∂P (r, `, t)

∂t
= Deff

∂

∂r

[
P

kBT
∂rU +

∂P

∂r

]
, (6.13)

whereDeff is the effective diffusion constant for dynamics.
Because polymers – whatever their stiffness – have a most probable end-to-end sep-

aration, there is a local minimum in the effective potential atr = rb (bottom), which is
∼ ` in the stiff-chain limit and∼ `

1
2 in the flexible-chain limit, neglecting self-avoidance

effects. Also notice in Fig. 6.4 the barrier to chain closing atr = rt ≈ α (top), which
is created by the balance of chain entropy and bending energy, as implied byU(r, `).
The short-range attractive potential then rounds off the barrier.1 The resulting effective

1In the diffusion-limited first-passage time of a singe particle, the attractive potential can be considered



6.4. LOOPING DYNAMICS 83

potential has thus the qualitative form often assumed in Kramers-rate calculations.
In the limit of strong damping, the time needed to cross over the barrier (mean first-

passage time), calculated using Kramers rate theory, is

τ
Kr
≈ 1

Deff

∫ rt

rb

dy e
U(y)
kBT

∫ rb

−∞
dz e

−U(z)
kBT (∆U � kBT ), (6.14)

where∆U is the barrier height (Appedix 6.5). In the presence of the “capture force,”
the barrier top becomes smooth, and the above equation can be further simplified as

τ
Kr

=
2πζeff

ωtωb

exp

(
∆U

kBT

)
, (6.15)

where the effective friction constantζeff = kBT
Deff

and the well curvaturesω(r) = 1
`p

∣∣∂2U
∂r2

∣∣ 12
are evaluated at the top and bottom of the effective potentialU(r, l).2 Here, we do
not repeat the derivation of this result (see Appendix 6.5.1) but instead state the basic
assumptions on which this result relies. Besides the strong-damping condition, a steady-
state condition was assumed, based on∆U � kBT . In other words, when the barrier
is much higher than the thermal energykBT , the barrier-crossing rate is expected to be
very small, and, thus, the solution of Eq. 6.13,P (r, `, t), is expected to change very
slowly with time, ı.e., it remains very close to a steady-state solution. In the literature
(e.g., [167]), this is often pictured as a system of non-interacting particles trapped in a
potential well with a particle “source” and a particle “absorber,” which keep the escape
current constant: As soon as a particle escapes the barrier, it will be removed, and a new
particle is then injected at the bottom of the potential. Here, the dominant contribution
to the escape rate is the exponential term, often referred to as the Arrhenius factor. Other
factors that also influence the Kramers rate are the curvatures (ωb andωt) and friction.
Larger friction means slower escape and hence longerτ

Kr
as evidenced by Eq. 6.15.

The curvature dependence ofτ
Kr

can also be understood:ωb andωt are, respectively,
the frequency of small oscillations around the potential bottom and bottom, which can
be interpreted as the attempt rate.

as infinitely strong, and one may question the validity of assuming a smooth potential top. For polymers,
however, we argue that the fluctuation of chain ends is rapid and “compact” (see Doi’s argument below),
thus smoothing the barrier top. In Appendix 6.5.1, we show that a “cusp-shaped” barrier also leads to
essentially the sameτ

Kr
for loop formation as does a smooth potential barrier.

2For intermediate-to-strong damping, the Kramers timeτ
Kr

is given by

τ−1
Kr

=
D0

kBT

ωb ωt

π
e
− ∆U

kBT

/(
1 +

√
1 +

4mD2
0 ω2

t

(kBT )2

)
.

The correction term4mD2
0 ω2

t

(kBT )2 is ≈ 10−7 for DNA monomers and can be neglected, justifying our use
of the strong-damping limit (Eq. 6.15). This condition is consistent with the one given at the beginning

of Sec. 6.3, ı.e.,mη � b2

D0
, as long asa > b, which can be easily seen by writing4mD2

0 ω2
t

(kBT )2 � 1 as
m
η �

kBT
ω2

t

1
D0
≈ a2

D0
.
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It proves useful to rewriteτ
Kr

in Eq. 6.15 as

τ
Kr

=
ζeff

ωt

×
[
2π

ωb

exp

(
∆U

kBT

)]
. (6.16)

Note that the term in brackets is the escape time in the transition-state theory (TST):
τ

TST
= 2π

ωb
exp(∆U/kBT ) [158]. (See Appendix 6.5.1) As it turns out, the estimate

τ
TST

errs because it is too much of an equilibrium estimate. It can be obtained by
counting particles crossing the barrier from right to left per unit time. In the polymer
case, this time scale is related to an equilibrium ring-closure probability throughτ

TST
∼

G−1
0 —the number of “particles” escaping the barrier in the sense of TST is inversely

proportional toG0. The extra factor in Eq. 6.16 implies that barrier crossing is further
slowed down by diffusion of the particle on the barrier top until it is captured by the
absorber; in the large friction limit,ζeff/ωt � 1 andτ

Kr
� τ

TST
. In fact, the factorωt

ζ
∼

1
a ζ

is proportional to the rate at which a random walk is captured by a spherical absorber
of radiusa [168]. As a result,τ

Kr
(`) varies asτ

Kr
∼ 1

α Deff
∼ 1

a Deff
. This dependence

is unique to a random walk in the diffusion-limited case, where an absorbing boundary
condition is imposed3 and has nothing to do with equilibrium chain properties.

The simple scaling argument based on Eq. 6.16 gives the qualitative features of
τ

Kr
. More careful analysis of the Kramers formula in Eq. 6.15 leads to the surprisingly

simple result,

τ
Kr

(`) = C 1

α Deff

`2
p

G0(`)
, (6.17)

with C [rb, G(rb, `)] = 2
√

2πr2
bG(rb, `)

/(
6
r2
b
− G′′(rb,`)

G(rb,`)

)1/2

, a dimensionless prefactor

that is practically a constant for all` [47].4

Eq. 6.17 is a direct result of our hypothesis (Eq. 6.12) that the closing time may be
estimated using the static distributionG(r, `). As noted earlier, no analytic expression
for G(r, `) has been found that is accurate for allr and`, and one must make do with a
pastiche of approximations that are applied in different limits forr (and`). For r = 0,
we use the interpolative formula due to Ringroseet al. [163] mentioned above, which
blends SY with the result for a freely jointed chain,G0(`) ∼ `−3/2. Forr > 0, we use the
TH approximation [141] presented in Eq. 6.7. Using TH, we find that the dimensionless
prefactorC(`) of Eq. 6.17 isO(10−1), varying less than a factor of 2 over0 < ` < ∞.

3For a smooth short-range potential of rangeα, the curvature at the top must be∼ 1/α by dimensional
analysis. We note that many simulations assume reaction upon first passage through the distanceα.
Despite the seeming difference between our Kramers’ approach and simulations that track the time for
particle ends to first pass through ther = α sphere, the “particle” (in a single-particle picture) in both
cases is not allowed to equilibrate within the reactive regionr ≈ α. Thus, in each case, one expects
τc ∼ 1/α for α � 1 (cf. Eq. 6.17). If we had assumed kinetic-limited looping, then the particle would
sample most of the reactive region, resulting inτc ∼ 1/α2 [146].

4We note that the numerical prefactors in Eq. 6.17 and 6.18 depend on the form of capture force
f(r/α), while their scalings are not affected by the form of short-range attractive forces (Appendix 6.5.1).
Here, we have used a direct differentiation of Eq. 6.12 to calculateωt.
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Figure 6.5: Closing timeτc vs. chain length. (a) Brownian Dynamics simulation [154]
(empty circles) and Kramers theory (eq. 6.17) are shown. For direct comparison, we
used the same parameters as in the Ref. [154] (bead size = 3.18 nm forDeff = 2D0 =
1.54× 10−11m2/s andα = 0.1) with `p = 50nm. ForG0(`), we used an interpolation by
Ringroseet al.[163] (see text). Relaxation timesτ

R
for these parameters are also shown

(triangular symbols), with thè4 and`2 scaling regimes apparent in the inset. (b) Single-
“particle” MC simulations ofτc with the potentialU/kBT = − log[P (r, `)] taken from
Fig. 6.4b. Here,τc is a first-contact time averaged over about 2000 realizations of the
initial position randomly selected fromP (r, `). We have chosenα = 0.25, 0.5, 0.75, 1.0.
As expected,τc ∼ `3/2

a
(inset).

.

One subtle issue of the single-variable picture, such as the one considered in this
chapter, is the choice ofDeff . In general,Deff can have a non-trivial dependence on the
chain length̀ . In what follows, we adopt the recent resultDeff = 2D0 (where,D0 is the
diffusion constant for individual monomers), summarized in Refs. [150, 151]. Briefly,
Deff = 2D0 is the relative diffusion constant of the chain ends, which is consistent
with the interpretation of Eq. 6.16 that the friction-independentτ

TST
explains the the

time required to bring the “particle” near the barrier top, while the friction-dependent
capture rateζeff

ωt
explains the diffusion (in our case, the fluctuations of the chain ends) of

the particle at the barrier top.

In Fig. 6.5(a), we plot theτ
Kr

(`) that results from Eq. 6.17, using the various approx-
imations toG(r, `) discussed above. The solid curve uses the Ringrose expression for
all `. The two curves compare well with recent simulations using parameters appropri-
ate to dsDNA [154, 156, 169]. Note that the material parameters of the simulation were
used (see caption). Considering the heuristic nature of the arguments, the agreement is
excellent.

One striking feature of the plot ofτ
Kr

(`) is the existence of a minimum at` ≈ 3.4,
where

τ ∗
Kr

= 0.78
`3
p

a D0

. (6.18)
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In Eq. 6.18, the prefactor0.78 is calculated by a Monte Carlo simulation ofG(r, `),
done in units of seconds. It is about 10% less than the prefactor obtained using the
TH approximation.5 As mentioned above, the existence of a minimum inτ

Kr
reflects a

balance between the energy of bending and the entropy of conformations that must be
searched for two ends to meet.

For the above Kramers-rate calculation to hold (ı.e., for the closing-timeτc to equal
τ

Kr
), three conditions must be satisfied: (1) The damping must be sufficiently strong.

(2) The barrier height∆U must be large compared tokBT (recall that this alone approx-
imately ensures a steady-state condition as is assumed in the Kramers approach). And
(3) the global chain-relaxation timeτ

R
must be much shorter than the Kramers timeτ

Kr
.

The first condition is normally satisfied for molecules in solution. For the second,
since there is a minimum in the effective potential atrb, we require thatα � rb so that
the barrier height is large. The condition∆U/kBT = 1 is shown in Fig. 6.6 as a dotted
line in the` − α parameter plane, using a diffusion constant appropriate to dsDNA. To
the left of the dashed line, the barrier height is larger thankBT .

The third condition,τ
R
� τ

Kr
, is more subtle and requires discussion. In using a

“one-particle” description of chain-closing dynamics, we are assuming that all internal
degrees of freedom of the polymer chain have relaxed. As a result, the end-to-end dis-
tancer is the only dynamic variable (cf. Eq. 6.22). This assumption of local equilibrium
is equivalent to assuming that the effective potential felt by the particle is derivable from
the time-independent distributionG(r, `). For∆U/kBT � 1, the particle in local equi-
librium will relax in the potential well, except aroundr ≈ α in our diffusion-limited
case. If the chain relaxation times are too long, our one-particle picture breaks down,
because the chain dynamics are not well-characterized by a single timescale, such as the
Rouse time. This will not only influence thèdependence but also theα dependence
of the closing time (see below). We thus compare the scaling behavior ofτ

R
(`) with

τ
Kr

(`) andτc(`) in both the flexible (̀� 1) and stiff-chain (̀ . 1) limits.
In the flexible limit, we can use the Rouse model to estimate the longest relaxation

time, which givesτ
R
∼ `2, in units of the basic time scalè2p/D0. By contrast, at

large `, Eq. 6.17 givesτ
Kr
∼ `3/2/α. (This is just the result of SSS [146, 150] and

has been confirmed by single-“particle” simulations—see Fig. 6.5(b) and the caption.)
Thus, wheǹ > 1/α2, the third condition is violated and the Kramers calculation does
not hold. In this case, we can still estimate the upper-limit ofτc as follows: The closing
time is at most the time necessary for the slowest “random walker” to travel, by diffusion
of the entire chain (DCM ∼ D0/l, where CM stands for center-of-mass), the mean end-

to-end distancerg. Sincerg ∼
√

`, we haveτc .
r2
g

DCM
∼ `2

D0
∼ τ

R
. In other words,

when the third condition does not hold,τc is not τ
Kr

but is set by the Rouse timeτ
R
.

On the other hand, theα-dependence of the closing time of a Rouse chain is a delicate
issue.

5To calculate the end-to-end distributionG(r, `), we have used a standard Kratky-Porod-type model
for Monte Carlo simulation. In other words, a randomly selected monomer rotates an arbitrary angle
about the axis defined by the vector connecting the two nearest-neighbor monomers. See, for example,
the simulation methods in Ref. [156].
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In an important paper [149], Doi has shown thatτc ∼ τ
R

and is independent of the
reaction radiusα, for 1 � α � rg (the “Doi-condition”).6 Doi’s basic reasoning is
that, if one expresses the end-to-end vector~r(t) in terms of the normal modes, the first
normal mode represents a random walk in a harmonic potential and dominates the long-
time behavior of~r(t). On the other hand, the higher modes correspond to a stronger
harmonic potential, relaxing faster; they are rapid compared to the first mode and can
be considered as the fluctuation of~r(t), which is very small (ı.e.,δr � |~r(t)|). If
δr � α, then the fluctuation does not affect the looping dynamics andτc ∝ 1/α. If
δr ≥ α, however, the reaction takes place as soon as|~r(t)| becomes smaller thanδr (not
α), since the motion of~r(t) is very fast and “compact” in the sphere of radiusδr. Later,
de Gennes explained the reaction-radius-independence and dependence of reaction rate
in terms of compact vs. non-compact exploration, respectively [170].

As the chain stiffness increases, the looping dynamics enters the regime of noncom-
pact exploration. In other words, thea dependence ofτc in the stiff-chain limit is not
complicated by internal modes. To see this, note that chain stiffness leads simultane-
ously to faster relaxation timesτ

R
and higher energy barriers, which implies that the

Kramers calculation should be valid. As shown in the previous section, forL < `p,
τ

R
∼ L4

2`pbD0
and the third condition (τ

R
� τ

Kr
) is always satisfied: the lower limit

of τc is given by the time scale for a random walk to travel a distanceR ∼ L; thus,
τ

Kr
∼ τc & R2

DCM
∼ L3

b D0
> L4

`pb D0
& τ

R
.

To summarize,τ
R
∼ L4 for ` < 1 and∼ L2 for ` � 1: contrary to what one may

expect, the looping dynamics is much more subtle for flexible chains than for semiflex-
ible chains. In other words, for large-enough`, τ

R
becomes larger than the Kramers

estimate [165],7 as shown in Fig. 6.5(a) and in the inset.
In Fig. 6.6(a), we summarize the above arguments schematically in a closing-time

tree. In Fig. 6.6(b), we alsoqualitativelyplot τ
R
(`) = τ

Kr
(`) in the `-α plane. The

white area is Region I (Kramers Regime), whereτ
Kr

> τ
R
, and thereforeτc ∼ τ

Kr
. The

shaded area is Region II (“dynamical fluctuation” or “Doi” Regime, see below), where
τ

Kr
< τ

R
andτc ∼ τ

R
. Areas I′ and II′ show where∆U < kBT . The black region,

defined byα > `, is unphysical. Finally, Region III is the intermediate regime, where
τ

R
> τ

Kr
andτc ∼ τ

R
/α.

In Region II, the relaxation and closing processes are coupled. In this case, one may
have to solve anN -particle diffusion problem, subject to a boundary condition that is
difficult to impose [147–150]. Nevertheless, much insight can still be obtained from the
simple scaling analysis of random walks given above. In this view, a chain can close
because the two ends randomly meet each other while freely relaxing. The existence
of such a dynamical-fluctuation or “Doi” regime, whereτc ∼ τ

R
, is a unique feature of

flexible chains (Fig. 6.6) – the dynamic fluctuationδR(t) ≡
√
〈[R(t)−R(0)]2〉 grows

up toR ast → τ
R

and thus can assist chain closing. For a Rouse chain,δR(t) can be
given as a sum of Rouse modes [137, 149] and, in our simple scaling analysis,τc can be

6Note also that the conditioǹ> 1/α2 in previous paragraph implies thatrg & 1/α, sincerg ∼ `1/2.
7Using the results in this referencee, we have derived an approximate interpolation, accurate for all`:

τ
R
(`) = (2/3π2)(`2p/Dchain) `3

(π/4)2+`2 . This interpolation is used in Fig. 6.5(a) (inset).
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Figure 6.6: Closing time: Kramers time vs. Rouse time (see text). (a) Tree diagram.
(b) Scaling regimes in thè-α for DNA. Region I is the Kramers regime, withτc > τ

R
;

Region II is the dynamic-fluctuation regime. Region III is the intermediate regime.
Crudely speaking, this is a region that separates Regions I and II. Also note that the
boundary between regions II and III for large` was constructed with the aid of the Doi’s
condition (see the text). On the other hand, the boundary for small` was constructed
based on the following physics ground: As` decreases,δr decreases, implying that the
intermediate region is narrower for smaller`. In the primed regions to the right of the
dashed line,∆U/kBT < 1. The black region is unphysical:a > L.

.

inferred by analyzing this. The short-time behavior ofδR(t) reflects the internal motion
and varies asδR(t) ∼

√
t for t � τ

R
. (See Appendix 6.5.2). We argue, however, that

this will not appreciably influenceτc, asδR(t) → R only whent → τ
R
. In other words,

τc is governed by the slowest mode and our assertion ofτc ∼ τ
R

will not be invalidated
by the internal motion, which is important at time scales much smaller thanτc (or τ

R
) –

according to our earlier discussion, the internal motion in the flexible-chain limit only
influencesα dependence ofτc. In the stiff-chain limit, this dynamical fluctuation regime
disappears. Note that the boundaries between Regions I and II are not sharp but are
crossovers. Loop-formation kinetics in the crossover area will likely combine aspects
of both regimes, as indicated in recent simulations [150] and by results that show that
τ

SSS
andτ

Doi
are respectively lower and upper bounds forτc [151].

As the Doi-condition1 � α � rg for Region II is violated,τc becomes depen-
dent upon1/α [149]. Indeed, based on their BD simulation results, Podtelezhnikovet
al. [171] suggested thatτc ' τ

R
/α when1 ≈ α � r. In Fig. 6.6, this is Region III.

Our discussion has neglected hydrodynamic effects and excluded-volume interac-
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tions. Both can influence chain relaxation and closing simultaneously. The hydrody-
namic effect will not changeτ

Kr
, since it is a function of the equilibrium distribution

G(r, `). However, the hydrodynamic interaction tends to promote chain relaxation (e.g.,
in the Zimm model,τ

R
∼ `3/2, in contrast toτ

R
∼ `2 in the Rouse model consid-

ered here [137]) by increasing the mobility of the chain, resulting in a wider Kramers
regime than implied by Fig. 6.6. On the other hand, the excluded-volume interaction
both decreasesDCM and reducesG0 [137, 172]. But for loops of just a few persistence
lengths, which are the most physically relevant (see below), both effects are expected to
be minor. A final caveat is that we have assumed isotropic binding interactions. While
mathematically simpler and relevant to simulations [154], most real polymers have di-
rectional bonding. In the Kramers calculation, this would modifyG0(`).

The Kramers calculation holds in Region I of the` − α parameter space shown in
Fig. 6.6. What are the physically relevant values ofα and`? The interaction distance
a = α`p will be the thickness of the polymer, or less. For polymers of biological interest,
the persistence length will be typically at least this size and often much larger. For
example, for double-stranded DNA, the monomer size is 0.34 nm while the persistence
length is 50 nm. For chromatin, the thickness is 30 nm, comparable to its persistence
length [125].8 Thus, we generally expectα < 1 and sometimesα � 1.

What are the relevant values of`? Although polymers in principle may have any
length, the existence of a minimum closing timeτ ∗

Kr
(Eq. 6.18) leads one to speculate

that where looping is biologically relevant, polymer lengths near` ≈ 3 − 4 might be
favored because they minimizeτc. In this regime, the Kramers calculation will be valid,
for smallα. Thus, biological selectivity may arise from a physical mechanism. Indeed,
in Ch. 5 we have shown that the typical spacings between replication origins in early
embryoXenopusare 3-4 times thèp of chromatin, the DNA-protein complex present
during replication. It is then natural to speculate that origins are related by looping
and that the spacing may have been selected to maximize the contact rate of origins,
optimizing replication efficiency.

In conclusion, we have shown that Kramers rate theory gives a straightforward
order-of-magnitude estimate of the closing time of a semiflexible polymer. We have
examined how the static chain properties are reflected in the looping dynamics. Al-
though phenomenological, the calculation explains the existence of a minimum closing
time and accurately reproduces numerical simulations. Moreover, considering the re-
quirements for the calculation to hold shows how the intertwining of the relaxation time
with the closing time explains the apparently conflicting results forτc (SSS and Doi).
Fortunately, the physically relevant cases are precisely the ones where the Kramers cal-
culation is expected to hold. They may even be selected biologically through evolu-
tion. Finally, although we have neglected the possibility of formation of multiple loops
(Fig. 5.2 vs. Fig. 6.1), we emphasize that, even in such cases, the intrinsic stiffness
of polymer implies the existence of characteristic loop size, where the loop-formation
probability is maximum andτc is minimum.

8Note that the value of the persistence length of chromatin fibers is still controversial. See endnote 30
of Dekkeret al. [125].
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Figure 6.7: Illustration of the trapping potentialU(x). The currentj gives the flux of
particles tunneling from the bottom well over the top.

6.5 Appendix

6.5.1 Review of the Kramers problem

Kramers treatment of the escape of a particle over a potential barrier extended an earlier
theory known as the Transition-State Theory (TST). We begin with a review of TST and
then show how to add the effects introduced by Kramers [158, 173, 174].

The transition-state theory (TST)

Imagine a classical particle placed in the vicinity of the bottomx = xb of the potential
U(x) in Fig. 6.7, where the potential barrier heightW = U(xt) − U(xb) is larger than
the average energy〈E〉 ∼ kBT of the particle. (Here,x is a reaction coordinate coupled
to an environment.) In other words, the particle is trapped. In the presence of thermal
fluctuations, however, this particle can escape from the potential well, since there is
always a non-zero probability∼ exp (−E/kBT ) that the particle can acquire enough
energyE > W from the environment. More precisely, the environment provides the
thermal noise whose fluctuations can kick the particle over the barrier. If the thermal
energykBT is much smaller than the barrier heightW , the particle will escape from the
trap after a long timeτesc, when the accumulated action of the random force has driven
it over the barrier. In this case, a particle inserted into the trap initially equilibrates in
the potential well in a timeτeq � τesc, approaching the Boltzmann distribution

Peq(x, v) =

{
1
Z
e
− 1

kBT { 1
2
mv2+U(x)} (x ≤ xt)

0 (x > xt)
(6.19)
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At short times, the normalization constantZ can be calculated as

Z = Zv Zx =

[∫ ∞

−∞
dv e

− 1
2

mv2

kBT

]
·
[∫ xt

−∞
dx e

−U(x)
kBT

]
≈

[√
2πkBT

m

]
·

[√
2πkBT

mω2
b

e
−U(xb)

kBT

]
, (6.20)

where we have used the quadratic approximationU(x) ≈ U(xb) + 1
2
mω2

b (x − xb)
2 for

the potentialU in the vicinity ofx = xb, where the main weight of the integral overx is
located. We also extend the upper limit of the integral fromxt to∞, an approximation
that is accurate as long as the barrier height is much larger thankBT .

From Eq. 6.19, we can obtain a first estimate of the escape rate by calculating the
currentj of right-moving probability,

j =

∫ ∞

0

dv v Peq(x = xb, v) =
ωb

2π
e
− W

kBT . (6.21)

This is the result of the classical transition-state theory (TST) [158], where the escape
rate is proportional to the “attempt rate”ωb and the Boltzmann factorkBT . The TST
rate is always an upper bound to the true rate because it is based on the following two
assumptions: (i) Thermodynamic equilibrium prevails throughout the entire system for
all degrees of freedom. Any deviation from the equilibrium distribution is neglected.
(ii) Once the particle crosses the barrier, it never diffuses back.

In the Kramers escape problem, one treats the trapped particle via Langevin dynam-
ics. Below, we derive the escape rate for the strong-damping case.

The flux-over-population method

We start with the Langevin equation for the particle,

mẍ = −U ′(x)− γ mẋ + ξ(t), (6.22)

where the prime indicates differentiation with respect tox. The fluctuating forceξ(t)
denotes Gaussian white noise with zero mean, obeying the fluctuation-dissipation theo-
rem,

〈ξ(t)〉 = 0 (6.23a)

〈ξ(t) · ξ(t′)〉 = 2mγkBT δ(t− t′). (6.23b)

In the strong-damping case, one drops the inertial termmẍ in Eq. 6.22. From
Eqs. 6.22-6.23b, one can then obtain the time evolution of the probabilityp(x, t) (the
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so-called Smoluchowski equation) [138]

∂p(x, t)

∂t
=

1

mγ

[
∂

∂x
U ′(x) + kBT

∂2

∂x2

]
p(x, t). (6.24)

Note that Eq. 6.24 has the structure of the continuity equation∂p(x,t)
∂t

+
−→
∇ ·~j(x, t) = 0,

wherej(x, t) is identified as− 1
mγ

[
U ′(x) + kBT ∂

∂x

]
p(x, t).

In rate theory, a common procedure to calculate the escape rate is to consider a
stationary situation in which a steady probability current fromxb to xt is maintained
by sources and sinks of particles [158]. The sources supply the potential well with
particles at energies that are a fewkBT below the barrier-heightW . These particles first
equilibrate before they eventually leave the well over the barrier. Beyond the barrier, the
particles are removed immediately by sinks. The total probability fluxj over the barrier
is then given by the product of the escape ratek from xb to xt, and the population of the
well n0, ı.e.,

k = τ−1
esc =

j

n0

. (6.25)

We place the source atx− < xb and the sink atx+ > xt. The stationary solutionρ(x)
then carries the currentj and obeys the absorbing boundary conditionρ(x = x+) = 0.
Thus,ρ(x) is given by the following solution:

j = − 1

mγ

[
U ′(x) + kBT

∂

∂x

]
ρ(x). (6.26)

This equation is easy to solve by noting that it has an integrating factor,

kBT e
−U(x)

kBT
d

dx

[
e

U(x)
kBT ρ(x)

]
=

dU(x)

dx
ρ(x) + kBT

dρ(x)

dx
= −mγ j. (6.27)

Thus, the stationary solution of the distribution is obtained as

ρ(x) =
mγ|j|
kBT

e
−U(x)

kBT

∫ x+

x

e
U(y)
kBT dy, (6.28)

while the populationn0 is simplyn0 =
∫ xt

−∞ dx ρ(x). Therefore, we obtain the following
average escape time

τesc = k−1 = n0/j =
mγ

kBT

∫ x+

−∞
dy e

−U(y)
kBT

∫ x+

y

dz e
U(z)
kBT , (6.29)
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which can be integrated by parts as follows:

τesc =
mγ

kBT

∫ x+

−∞
dy e

U(y)
kBT

∫ y

−∞
dz e

−U(z)
kBT (6.30a)

≈ mγ

kBT

∫ xt

xb

dy e
U(y)
kBT︸ ︷︷ ︸

I1

·
∫ xb

−∞
dz e

−U(z)
kBT︸ ︷︷ ︸

I2

(W � kBT ). (6.30b)

For smooth bottom and top of barriers that can be approximated asU(x) = U(xb,t) ±
1
2
mω2

b,t(x− xb,t)
2, it is straightforward to show using Eq. 6.30b that

τesc =

[
ωbωt

2πγ
e
− W

kBT

]−1

. (6.31)

Re-derivation of scaling in Eq. 6.17 [175]

Note that Eq. 6.30 does not depend on the shape of the potential top, while Eq. 6.31
assumed a parabolic shape. In other words,ωb andωt are the curvatures atx = xb and
x = xt, respectively.

In Eq. 6.17 in Sec. 6.4, the1/α dependence came from the curvatureωt at the
potential top (r = α); however, if there is no attraction between the two sticky ends
of the polymer, it is more appropriate to consider the first-passage time when the ends
first are within a distancea of each other. In this case, the effect is to truncate the
potential atxt, implying that there is a cusp atxt rather than a smooth top. One may
then question whether the scaling inτKr is still valid. In fact, Eq. 6.17 is a general result.
To see this, for Eq. 6.12 [U(r, `) = −kBT ln P (r, `)], we note that the integrand in the
first integralI1 in Eq 6.30b is

e
U(r)
kBT = [4πr2G(r, `)]−1. (6.32)

Then,I1 becomes

I1 =

∫ rt=α�1

rb

{4πr2 G(r, `)}−1dr

≈ 1

G(0, `)

∫ rt=α

rb

dr

4πr2
(6.33)

∼ 1

α G(0, `)
,

and we recover the scaling in Eq. 6.17, which is valid even for a non-parabolic potential
top (ı.e., in the absence of artificial attractive potentials in Fig. 6.4).
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6.5.2 Reaction-radius dependence and compact vs. non-compact
exploration

To understand theα-independence ofτc ∼ τR for ` � 1,9 it is worth considering first the
much simpler case of free random walks, which are characterized by diffusive motion:

δx(t) ≡
√
〈[~x(t)− ~x(0)]2〉 ∼

√
Dt.

The rate at which a random walk is captured by an absorbing sphere of radiusa in a
steady-state is proportional toaD. Note that the rate at which two random walks of
radiusa collide into each other also varies asaD. This simply states how effectively
the random walk “searches” the volume available to it [177]. For a timet, the random
walk has searched through a total volume of∼ aDt. This implies that the collision rate
or the absorbing rate is proportional toaD, reminiscent ofτ−1

Kr ∼ aD. It is instructive
to compare this with the corresponding collision rate of molecules in a gaseous phase,
which is proportional to1/a2. The main difference between these two cases is that
the path of a random walk is denser. Random walks are hence correctly referred to as
space-filling objects [177].

To further proceed with this line of reasoning, consider the general case for which
the time evolution of particles followsδx(t) ∼ tγ/2.10 Let us introduce the density
of volume searched by a particle during a timet as ρ(t), which equals the ratio of
the total volume explored to the (distance the particle has travelled)3. Clearly,ρ(t) ∼
t/
(
tγ/2
)3 ∼ t1−3γ/2. Whenγ < 2/3, ρ(t) diverges ast → ∞. This divergence implies

that any volume fractionδV will be visited infinitely often (this phenomenon is termed
“compact exploration” [170]). It is not hard to imagine that thea-dependence of the
collision or absorbing rate is dictated by the exponentγ; we have already seen the dif-
ference between the casesγ = 2 (gaseous molecules) andγ = 1 (free random walk).
Forγ < 2/3, the rate is expected to become insensitive toa, since the paths of the par-
ticles overlap many times over the length scale ofa: When two such particles separated
by a distanced have travelled a distance∼ d, their paths have certainly crossed (ı.e.,
reacted) each other, no matter how smalla is.

We now turn to the polymer problem. For simplicity, we only consider a Rouse chain
(ideal flexible chain) here. In contrast to the previous random-walk case, polymer dy-
namics is complicated by the competition between various internal modes; a single ex-
ponent cannot fully characterize end fluctuations defined byδR2(t) ≡

〈
[R(t)−R(0)]2

〉
.

In terms of normal modes:
δR2(t) = δR2

∞ · f(t), (6.34)

where

f(t) =
8

π2

∞∑
p

1

p2

(
1− e−tp2/τR

)
(6.35)

9This section reports recent results of Bae-Yeun Ha [176].
10Note that the exponent is not intrinsic to the random walk. It is determined by such factors as space

dimensions or the presence of disorder in the medium in which the random walk takes place.
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Figure 6.8: The function[f(t)] as a function oft/τR along with a short-time (c t1/2) and
long-time approximation (f1(t)). The constantc is chosen so that the two curves match
each other for sufficiently smallt. For t . 1

2
τR, φ(t) varies as(t/τR)1/2, while for

t & 1
2
τR, f(t) ≈ f1(t). In each region,f(t) and its approximation essentially collapse

onto each other. (Courtesy of Bae-Yeun Ha.)
.

andδR2
∞ ≡ δR2(t = ∞) = 2 〈R2〉 andp = 1, 3, 5....

We find thatf(t) ∼ (t/τR)1/2 (see Fig. 6.8 and the caption) and henceδR(t) ∼
δR∞(t/τR)1/4 (subdiffusive) fort . 1

2
τR, while δR(t) ≈ δR∞f1(t) for t & 1

2
τR, where

f1(t) = 1− 8
π2 e

−t/τR 11. This means the path of~R(t) is compact when it is observed over
short time scalest . 1

2
τR. Much beyond this, the end fluctuation gets saturated at its

equilibrium value:δR∞. The characteristic radius of Doi’s sphere (inside which the path
is compact) is thenRDoi ≈ 1

2
δR(t ≈ 1

2
τR) ≈ 1

2
R = 1

2

√
Lb. Note that this is somewhat

larger than Doi’s original estimate based on equilibrium considerations [149]; internal
modes are underestimated in the latter, leading to a smallerRDoi ≈ 0.2R. Following
Doi [149], a-dependence ofτc depends whetherRDoi is larger thana or not. When
RDoi � a (or rg � α), then the interaction range is set byRDoi rather thana.

As it turns out, the conditionrg � α is only a necessary condition forτc to be

11Strictly speaking, Eq. 6.35 (hencef(t) ∼ t1/2 for small t) holds in the continuum limit:N → ∞
andb → 0 so thatL = Nb. For a chain consisting of a finite number of chain segments,f(t) can be
shown to vary ast for small t [149]. This implies that the Doi’s regime is realized only for sufficiently
largeN .
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independent ofα: τc ∼ τR. Recall that, for subdiffusive motion,ρ(t) → ∞ in the
limit t → ∞. On the other hand, the end fluctuation of a polymer gets saturated as
t/τR → ∞. This implies that the limitρ(t) → ∞ is not realized in this analysis. Ifa
is much larger thanb, the smallest length scale in the system, however, the paths of the
two ends will more likely overlap each other when they fall in the rangeRDoi. Hence
Doi’s condition is summarized by1 � α � rg for a Rouse chain.



Chapter 7

Conclusion

In this thesis, we have introduced several problems in theoretical physics that were in-
spired by the phenomenon of DNA replication. The 1D KJMA model has been extended
to the case of arbitrary nucleation rateI(t), and we have obtained various analytical
results for evolution of domain-size distributions. We also have presented a new simu-
lation algorithm that is faster than more standard methods by a factor of102− 103. The
simulation and the analytical results are in excellent agreement.

In addition, using the Kramers escape rate theory, we have obtained a simple analyt-
ical expression to estimate the closing timeτc of biopolymers in the diffusion-controlled
case. An interesting point is that the intrinsic stiffness of polymers implies a minimum
chain closing timeτc. Shorter chains require too much energy relative to the thermal en-
ergykBT , while longer chains need to search too many conformations for ends to find
each other. The energy and entropy balance when the chain length is approximately 3-4
times its persistence length, giving the minimum loop-formation time and the maximum
loop-formation probability.

Equally important, these theoretical tools have then been employed to tackle prob-
lems in DNA replication itself. First, DNA replication processes have been modeled as
a 1D nucleation-and-growth problem, and the extended 1D KJMA model has been ap-
plied to extract the temporal program [I(t)] of Xenopus early embryos. The extracted
I(t) from actual data of molecular-combing experiments shows striking features: repli-
cation origins fire throughout S phase, and the initiation rate suddenly increases in the
middle of S phase.

Second, we have demonstrated that looping of chromatin can solve the long-standing
“random-completion problem” in early embryonic DNA replication. In other words,
origins of replication in early embryos are distributed non-randomly along the genome,
with typical spacings of 5-15 kb. In the absence of a sequence requirement, biologists
have not been able to understand what exactly regulates the origin spacing. We have
explained the distribution of origin-spacing based on chromatin looping, quantitatively.
In particular, we have shown that the 5-15 kb origin-spacing corresponds to the typical
loop-size of chromatin. Also, the persistence length3.2 ± 0.1 kb of Xenopus sperm
chromatin fiber deduced using the Shimada-Yamakawa distribution is consistent with
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experimental results for other organisms such as chickenerythrocyteand Yeast chromo-
some.

The successful interplay between theory and experiment presented in this thesis en-
courages us to to extend our methods even further. From the theoretical point of view,
it would be highly desirable to generalize the kinetic model to include correlation (e.g.,
origin-interference effects) and sequence information in the nucleation rateI, as well as
variable fork velocityv, to construct a complete replication profile. Such information
can be obtained by molecular-combing experiments on a single-nucleus experiment,
which is a formidable task but technically feasible.

Also, we have noted that the looping problem discussed in this thesis, that of a finite-
sized chain with two reacting ends, is only the first step toward understanding the true
chromatin dynamics during the cell cycle, especially during DNA replication. In real
systems, many protein complexes distributed along a practically-infinitely-long chain
interact with replication factories, forming multiple loops. In this case, we expect the
loop-size distribution to decay exponentially (as opposed to the`−3/2-algebraic decay
of a single chain) and the corresponding dynamics to be much more complicated. We
thus have to find a way to extend our results to the case of multiple-loop formation.

Perhaps a more important implication of our results is not that one can find interest-
ing physics problems in biological systems but that we now have a model that makes
quantitative predictions in DNA replication that can be testedexperimentally. Indeed,
with the recent progress on single-molecule manipulation techniques and genetic engi-
neering, one can hope to see whether varying the persistence length of chromatin will
change the kinetics of DNA replication of early embryos in the way that our theory pre-
dicts. In addition, because of the current detailed understanding of cell-cycle regulation
and DNA replication, the kinetic model can be used as a tool to extract and compare
replication profiles of various organisms. For example, understanding the replication
kinetics of cancer cells and how this kinetics differs from that of normal cells would be
one of the many important practical applications that one can entertain using the kinetic
model.

Finally, we emphasize that, without the recent availability of large quantities of data
such as were provided by theXenopusexperiment, a kinetic model based on the formal
analogy between the 1D KJMA model and DNA replication would have been just an-
other “premature” calculation. In this thesis, I hope to have convinced the reader that
our work on DNA replication is illustrative of a mature interaction between theory and
experiment that will continue to bear fruit in the years ahead.
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